Equation of a Circle: Center on y=6-2x, Passing Through (-2,0) & (4,0)

Click For Summary

Discussion Overview

The discussion revolves around finding the equation of a circle whose center lies on the line defined by \(y=6-2x\) and which passes through the points A(-2,0) and B(4,0). Participants explore various methods to derive the equation, involving geometric properties and algebraic formulations.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant suggests that the center of the circle can be expressed as \((x_{0}, 6-2x_{0})\) and proposes using the standard form of the circle's equation to derive relationships involving the radius and center.
  • Another participant introduces a geometric approach, stating that the center lies on both the line \(y=6-2x\) and the perpendicular bisector of segment AB, leading to the calculation of the midpoint and slopes to find the intersection point as the center.
  • A later reply corrects a misidentification of point B, clarifying that it should be \(B\equiv (4,0)\) rather than \(B\equiv (0,4)\), while noting that this does not affect the radius calculation but does impact the center's determination.
  • One participant provides a detailed algebraic solution, deriving the center's coordinates and the radius through equations that equate distances from points A and B to the center.

Areas of Agreement / Disagreement

Participants present multiple approaches to the problem, with some agreeing on the methods used while others challenge specific details, such as the identification of points. The discussion remains unresolved regarding the definitive center of the circle due to differing interpretations of the geometric setup.

Contextual Notes

There are unresolved assumptions regarding the geometric configuration and the implications of the center's location on the line. The discussion also highlights the dependence on correct identification of points A and B for accurate calculations.

thorpelizts
Messages
6
Reaction score
0
find the equation of a circle whose center falls ont he line y=6-2x and which passes through the points A(-2,0) and B(4,0).

poor in circles. how to even start?
 
Mathematics news on Phys.org
thorpelizts said:
find the equation of a circle whose center falls ont he line y=6-2x and which passes through the points A(-2,0) and B(4,0).

poor in circles. how to even start?

Hi thorpelizts, :)

So the center of the circle should be \((x_{0},6-2x_{0})\). The equation of a circle with radius \(r\) and center \((a,b)\) can be represented in Cartesian coordinates by,

\[(x-a)^2+(y-b)^2=r^2\]

In our case,

\[(x-x_{0})^2+(y-6+2x_{0})^2=r^2\]

Now we know that, \(A\equiv (-2,0)\) and \(B\equiv (4,0)\) lies on the circle. So these two points must satisfy the above equation. Then you will have two equations with two unknowns\((r\mbox{ and }x_{0})\). Hope you can continue.

Kind Regards,
Sudharaka.
 
Hello, thorpelizts!

Another approach . . .

Find the equation of a circle whose center is on the line y\,=\,6-2x
and which passes through the points A(\text{-}2,0) and B(4,0).
Code:
             \|
             6*
              |\
              | \
              |  \
         (0,4)oB  \
             /|    \
            / |     \
           *  |      \
          /   *       \
       A /    |  *     \3
    - - o - - + - - * - + - - -
      (-2,0)  |        * \
              |           oC
              |            \ *
              |
The center lies on the line y \,=\,6-2x
The center lies on the perpendicular bisector of AB.
. . The center is the intersection of these two lines.

The midpoint of AB is (\text{-}1,2)
The slope of AB is 2.
The perpendicular slope is: \text{-}\tfrac{1}{2}
The equation of the perpendicular bisector is:
. . y - 2 \;=\;\text{-}\tfrac{1}{2}(x + 1) \quad\Rightarrow\quad y \:=\:\text{-}\tfrac{1}{2}x + \tfrac{3}{2}

It has an x-intercept at (3,0).
And so does the other line!

Their intersection (and hence the center) is: C(3,0).

The radius is: AC = BC = 5.

Got it?
 
Sudharaka said:
Hi thorpelizts, :)

So the center of the circle should be \((x_{0},6-2x_{0})\). The equation of a circle with radius \(r\) and center \((a,b)\) can be represented in Cartesian coordinates by,

\[(x-a)^2+(y-b)^2=r^2\]

In our case,

\[(x-x_{0})^2+(y-6+2x_{0})^2=r^2\]

Now we know that, \(A\equiv (-2,0)\) and \(B\equiv (4,0)\) lies on the circle. So these two points must satisfy the above equation. Then you will have two equations with two unknowns\((r\mbox{ and }x_{0})\). Hope you can continue.

Kind Regards,
Sudharaka.

Since a complete answer had been posted to the question let me complete my method,

\[(-2-x_{0})^2+(-6+2x_{0})^2=r^2=(4-x_{0})^2+(-6+2x_{0})^2\]

\[\Rightarrow (-2-x_{0})^2=(4-x_{0})^2\]

\[\Rightarrow 4+4x_{0}=16-8x_{0}\]

\[\Rightarrow 12x_{0}=12\]

\[\Rightarrow x_{0}=1\]

Therefore,

\[r^2=(4-1)^2+(-6+2)^2=9+16=25\]

\[\Rightarrow r=5\]

Kind Regards,
Sudharaka.
 
soroban said:
Hello, thorpelizts!

Another approach . . .


Code:
             \|
             6*
              |\
              | \
              |  \
         (0,4)oB  \
             /|    \
            / |     \
           *  |      \
          /   *       \
       A /    |  *     \3
    - - o - - + - - * - + - - -
      (-2,0)  |        * \
              |           oC
              |            \ *
              |
The center lies on the line y \,=\,6-2x
The center lies on the perpendicular bisector of AB.
. . The center is the intersection of these two lines.

The midpoint of AB is (\text{-}1,2)
The slope of AB is 2.
The perpendicular slope is: \text{-}\tfrac{1}{2}
The equation of the perpendicular bisector is:
. . y - 2 \;=\;\text{-}\tfrac{1}{2}(x + 1) \quad\Rightarrow\quad y \:=\:\text{-}\tfrac{1}{2}x + \tfrac{3}{2}

It has an x-intercept at (3,0).
And so does the other line!

Their intersection (and hence the center) is: C(3,0).

The radius is: AC = BC = 5.

Got it?

Hi soroban, :)

I think there is a slight mistake here. You have taken \(B\equiv (0,4)\) whereas it should be \(B\equiv (4,0)\). It does not change the answer for the radius but it certainly give a wrong answer for the center point.

Kind Regards,
Sudharaka.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
2
Views
2K
Replies
6
Views
2K
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K