MHB Erin's question via email about a Fourier Transform

Click For Summary
The discussion focuses on finding the Fourier Transform of a piecewise function defined for specific intervals. The calculation involves integrating the function over its defined ranges and applying integration techniques to derive the final expression. The resulting Fourier Transform is expressed as F(ω) = (1 - cos(2ω))/ω², highlighting its dependence on the frequency variable ω. Additionally, a comment suggests that understanding Fourier transforms can be enhanced through distribution theory, referencing a specific book for further reading. The conversation emphasizes both the mathematical process and theoretical insights related to Fourier analysis.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Find the Fourier Transform of $\displaystyle \begin{align*} f \left( t \right) = \begin{cases} 1 - \frac{t}{2} \textrm{ if } 0 \leq t \leq 2 \\ 1 + \frac{t}{2} \textrm{ if } -2 \leq t < 0 \\ 0 \textrm{ elsewhere } \end{cases} \end{align*}$

$\displaystyle \begin{align*} F \left( \omega \right) &= \mathcal{F} \left\{ f \left( t \right) \right\} \\
&= \int_{-\infty}^{\infty}{ f\left( t \right) \mathrm{e}^{-\mathrm{j}\,\omega \, t}\,\mathrm{d}t } \\
&= \int_{-\infty}^{-2}{ 0\,\mathrm{d}t } + \int_{-2}^0{ \left( 1 + \frac{t}{2} \right) \mathrm{e}^{-\mathrm{j}\,\omega\,t}\,\mathrm{d}t } + \int_0^2{ \left( 1 - \frac{t}{2} \right) \mathrm{e}^{-\mathrm{j}\,\omega\,t}\,\mathrm{d}t } + \int_2^{\infty}{0\,\mathrm{d}t} \\
&= 0 + \left[ \left( 1 + \frac{t}{2} \right) \left( \frac{\mathrm{e}^{-\mathrm{j}\,\omega\,t}}{-j\,\omega} \right) \right]_{-2}^0 - \int_{-2}^0{ \frac{\mathrm{e}^{-\mathrm{j}\,\omega\,t}}{-2\,\mathrm{j}\,\omega}\,\mathrm{d}t } + \left[ \left( 1 - \frac{t}{2} \right) \left( \frac{\mathrm{e}^{-\mathrm{j}\,\omega\,t}}{-\mathrm{j}\,\omega} \right) \right]_0^2 - \int_0^2{ \frac{\mathrm{e}^{-\mathrm{j}\,\omega\,t}}{2\,\mathrm{j}\,\omega}\,\mathrm{d}t } + 0 \\
&= \frac{1}{-\mathrm{j}\,\omega} - \left[ \frac{\mathrm{e}^{-\mathrm{j}\,\omega\,t}}{2\,\mathrm{j}^2\,\omega^2} \right] _{-2}^0 - \left( \frac{1}{-\mathrm{j}\,\omega} \right) - \left[ \frac{\mathrm{e}^{-\mathrm{j}\,\omega\,t}}{-2\,\mathrm{j}^2\,\omega^2} \right] _0^2 \\
&= \left[ \frac{\mathrm{e}^{-\mathrm{j}\,\omega\,t}}{2\,\omega^2} \right] _{-2}^0 - \left[ \frac{\mathrm{e}^{-\mathrm{j}\,\omega\,t}}{2\,\omega^2} \right] _0^2 \\ &= \frac{1}{2\,\omega^2} \left\{ \left[ \mathrm{e}^{-\mathrm{j}\,\omega\,t } \right] _{-2}^0 - \left[ \mathrm{e}^{-\mathrm{j}\,\omega\,t} \right] _0^2 \right\} \\
&= \frac{1}{2\,\omega^2} \left[ \left( 1 - \mathrm{e}^{2\,\mathrm{j}\,\omega } \right) - \left( \mathrm{e}^{-2\,\mathrm{j}\,\omega\,t} - 1 \right) \right] \\ &= \frac{1}{2\,\omega^2} \left[ 2 - \left( \mathrm{e}^{2\,\mathrm{j}\,\omega} + \mathrm{e}^{-2\,\mathrm{j}\,\omega} \right) \right] \\ &= \frac{1}{\omega^2} \left[ 1 - \left( \frac{\mathrm{e}^{2\,\mathrm{j}\,\omega} + \mathrm{e}^{-2\,\mathrm{j}\,\omega}}{2} \right) \right] \\ &= \frac{1 - \cos{ \left( 2\,\omega \right) }}{\omega ^2} \end{align*}$
 
Last edited:
Mathematics news on Phys.org
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K