Erin's question via email about a Fourier Transform

Click For Summary
SUMMARY

The Fourier Transform of the piecewise function \( f(t) \) is calculated using the integral definition of the Fourier Transform. The function is defined as \( f(t) = 1 - \frac{t}{2} \) for \( 0 \leq t \leq 2 \) and \( f(t) = 1 + \frac{t}{2} \) for \( -2 \leq t < 0 \). The resulting Fourier Transform is given by \( F(\omega) = \frac{1 - \cos(2\omega)}{\omega^2} \). Additionally, the discussion highlights the utility of distribution theory in understanding Fourier transforms, referencing a specific textbook for further reading.

PREREQUISITES
  • Understanding of Fourier Transform concepts
  • Familiarity with piecewise functions
  • Knowledge of complex exponentials and integration techniques
  • Basic understanding of distribution theory
NEXT STEPS
  • Study the properties of Fourier Transforms in detail
  • Learn about distribution theory and its applications in signal processing
  • Explore advanced integration techniques for complex functions
  • Read "The Fourier Transform and Its Applications" by Ronald N. Bracewell
USEFUL FOR

Students and professionals in mathematics, engineering, and physics who are interested in signal processing and the application of Fourier Transforms in various fields.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Find the Fourier Transform of $\displaystyle \begin{align*} f \left( t \right) = \begin{cases} 1 - \frac{t}{2} \textrm{ if } 0 \leq t \leq 2 \\ 1 + \frac{t}{2} \textrm{ if } -2 \leq t < 0 \\ 0 \textrm{ elsewhere } \end{cases} \end{align*}$

$\displaystyle \begin{align*} F \left( \omega \right) &= \mathcal{F} \left\{ f \left( t \right) \right\} \\
&= \int_{-\infty}^{\infty}{ f\left( t \right) \mathrm{e}^{-\mathrm{j}\,\omega \, t}\,\mathrm{d}t } \\
&= \int_{-\infty}^{-2}{ 0\,\mathrm{d}t } + \int_{-2}^0{ \left( 1 + \frac{t}{2} \right) \mathrm{e}^{-\mathrm{j}\,\omega\,t}\,\mathrm{d}t } + \int_0^2{ \left( 1 - \frac{t}{2} \right) \mathrm{e}^{-\mathrm{j}\,\omega\,t}\,\mathrm{d}t } + \int_2^{\infty}{0\,\mathrm{d}t} \\
&= 0 + \left[ \left( 1 + \frac{t}{2} \right) \left( \frac{\mathrm{e}^{-\mathrm{j}\,\omega\,t}}{-j\,\omega} \right) \right]_{-2}^0 - \int_{-2}^0{ \frac{\mathrm{e}^{-\mathrm{j}\,\omega\,t}}{-2\,\mathrm{j}\,\omega}\,\mathrm{d}t } + \left[ \left( 1 - \frac{t}{2} \right) \left( \frac{\mathrm{e}^{-\mathrm{j}\,\omega\,t}}{-\mathrm{j}\,\omega} \right) \right]_0^2 - \int_0^2{ \frac{\mathrm{e}^{-\mathrm{j}\,\omega\,t}}{2\,\mathrm{j}\,\omega}\,\mathrm{d}t } + 0 \\
&= \frac{1}{-\mathrm{j}\,\omega} - \left[ \frac{\mathrm{e}^{-\mathrm{j}\,\omega\,t}}{2\,\mathrm{j}^2\,\omega^2} \right] _{-2}^0 - \left( \frac{1}{-\mathrm{j}\,\omega} \right) - \left[ \frac{\mathrm{e}^{-\mathrm{j}\,\omega\,t}}{-2\,\mathrm{j}^2\,\omega^2} \right] _0^2 \\
&= \left[ \frac{\mathrm{e}^{-\mathrm{j}\,\omega\,t}}{2\,\omega^2} \right] _{-2}^0 - \left[ \frac{\mathrm{e}^{-\mathrm{j}\,\omega\,t}}{2\,\omega^2} \right] _0^2 \\ &= \frac{1}{2\,\omega^2} \left\{ \left[ \mathrm{e}^{-\mathrm{j}\,\omega\,t } \right] _{-2}^0 - \left[ \mathrm{e}^{-\mathrm{j}\,\omega\,t} \right] _0^2 \right\} \\
&= \frac{1}{2\,\omega^2} \left[ \left( 1 - \mathrm{e}^{2\,\mathrm{j}\,\omega } \right) - \left( \mathrm{e}^{-2\,\mathrm{j}\,\omega\,t} - 1 \right) \right] \\ &= \frac{1}{2\,\omega^2} \left[ 2 - \left( \mathrm{e}^{2\,\mathrm{j}\,\omega} + \mathrm{e}^{-2\,\mathrm{j}\,\omega} \right) \right] \\ &= \frac{1}{\omega^2} \left[ 1 - \left( \frac{\mathrm{e}^{2\,\mathrm{j}\,\omega} + \mathrm{e}^{-2\,\mathrm{j}\,\omega}}{2} \right) \right] \\ &= \frac{1 - \cos{ \left( 2\,\omega \right) }}{\omega ^2} \end{align*}$
 
Last edited:
  • Like
Likes   Reactions: bhobba
Physics news on Phys.org

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K