MHB Ernesto's question at Yahoo Answers regarding finding a locus of points

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Points
AI Thread Summary
The problem involves finding the locus of points P from which the sum of the lengths of tangents to two circles, C1 and C2, is constant. The circles are defined by the equations x² + y² = 4 and x² + y² = 9, with radii r1 = 2 and r2 = 3, respectively. The sum of the tangent lengths from point P is given as S = 5. By applying the tangent length formula and manipulating the equations, the locus of points is derived to be a circle with the equation x² + y² = (√145/4)². This indicates that the locus is a circle centered at the origin with a specific radius.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

The sum of the lengths of the tangents from a point P to the circumferences...?


The sum of the lengths of the tangents from a point P to the circumferences:

C1 : x² + y² = 4

and

C2 : x² + y² = 9

is constant and equal to 5.
Determine the locus of the point P.

Explain.

Thanks.

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Ernesto,

Let's orient a circle or radius $r$ centered at the origin, and place a point on the $x$-axis outside of the circle, and let it's distance from the origin be $d$. Drawing a tangent line from this point to the circle (in the first quadrant), we form a right triangle, since the tangent line is perpendicular to the radius of the circle drawn to the tangent point. Let $\ell$ be the length of this line segment. Hence, we may state:

$$r^2+\ell^2=d^2$$

Solving for $\ell$, we obtain:

$$\ell=\sqrt{d^2-r^2}$$

Now, observing that there is also a fourth quadrant tangent point, we may state that the sum $S$ of the lengths of the tangent line segments is:

$$S=2\sqrt{d^2-r^2}$$

Now, if we do this for two circles, one of radius $r_1$ and the other of radius $r_2$, we then have:

$$S=2\left(\sqrt{d^2-r_1^2}+\sqrt{d^2-r_2^2} \right)$$

In order to ease solving for $d$, let's write the equation as:

$$S-2\sqrt{d^2-r_2^2}=2\sqrt{d^2-r_1^2}$$

Squaring both sides of the equation, there results:

$$S^2-4S\sqrt{d^2-r_2^2}+4\left(d^2-r_2^2 \right)=4\left(d^2-r_1^2 \right)$$

Distributing and combining like terms, and isolating the term with the remaining radical we obtain:

$$4S\sqrt{d^2-r_2^2}=4r_1^2-4r_2^2+S^2$$

Squaring again, we obtain:

$$16S^2\left(d^2-r_2^2 \right)=\left(4r_1^2-4r_2^2+S^2 \right)^2$$

$$d^2=\frac{\left(4r_1^2-4r_2^2+S^2 \right)^2}{16S^2}+r_2^2=\frac{\left(4\left(r_1^2-r_2^2 \right)+S^2 \right)^2+\left(4r_2S \right)^2}{(4S)^2}$$

Now, since this will hold for any point that is a distance $d$ from the origin, which describes a circle centered at the origin having radius $d$, we then find the locus of points is:

$$x^2+y^2=\frac{\left(4\left(r_1^2-r_2^2 \right)+S^2 \right)^2+\left(4r_2S \right)^2}{(4S)^2}$$

Now, using the data given with the problem:

$$r_1=2,\,r_2=3,\,S=5$$

We find the locus of points is:

$$x^2+y^2=\left(\frac{\sqrt{145}}{4} \right)^2$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top