HI everyone,(adsbygoogle = window.adsbygoogle || []).push({});

Imagine we are sampling of a gaussian signal along time and need to know the power/variance associated with the first N spectral components. So we take our favorite fft algorithm to get the PSD.

The error associated with a given estimated spectral component f(w) (w is the frequency) of a Gaussian signal follows a Chi-squared distribution with ν=2 degrees of freedom (we just have a single spectrum, no averaging, no overlapping). For instance the 95% confidence interval is given by:

.[νχ2(ν,α/2), ν/χ2(ν,1−α/2)] with ν=2 and α=0.05.

That is, we have 95% of chance to find the true F(w) in the range

[νχ2(ν,α/2)f(w), νχ2(ν,1−α/2)f(w)].

NB: f(w) is the estimated frequency component, F(w) is the true frequency component.

My question is the following: what is the error in the power/variance estimate which equals to the sum of f(w) over the N spectral components (N positive frequencies) of the spectra?

Thanks for your help

- Is it given by a χ2 law with ν=2N degrees of freedom?
- Is it given by the summation of the error in each independent frequency ?
- Something else?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Error in summation of spectral components

**Physics Forums | Science Articles, Homework Help, Discussion**