MHB Estefano's question at Yahoo Answers involving a linear approximation

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Need help with calculus word problem?

Please explain how to solve it.
An ancient counterfeiter clipped the edges of a gold coin. The coin was originally a cylinder with a radius of 10 mm and a thickness of 2 mm, and the counterfeiter stripped 0.1 mm from around the edges. Approximate the amount of gold stripped from this coin to the nearest mm3.

Here is a link to the question:

Need help with calculus word problem? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Estefano,

For problems like this, I like to begin with the approximation:

$$\frac{\Delta V}{\Delta r}\approx\frac{dV}{dr}$$

$$\Delta V\approx\frac{dV}{dr}\cdot\Delta r$$

$$V(r+\Delta r)-V(r)\approx\frac{dV}{dr}\cdot\Delta r$$

Now, with:

$$V=\pi r^2h\,\therefore\,\frac{dV}{dr}=2\pi rh$$

and letting $$r=9.9\text{ mm},\,\Delta r=0.1\text{ mm}$$ we find:

$$V(10)-V(9.9)\approx\left(2\pi(9.9)(2) \right)\cdot(0.1)=3.96\pi\text{ mm}^3$$

For comparison, the exact value of the change in volume is:

$$V(r+\Delta r)-V(r)=\pi(10)^2(2)-\pi(9.9)^2(2)=2\pi(1.99)=3.98\pi\text{ mm}^3$$

Because of rounding to the nearest unit, the linear approximate gives us a change of volume of $12\text{ mm}^3$, whereas the exact value would be rounded to $13\text{ mm}^3$.

To Estefano and any other guests viewing this topic, I invite and encourage you to register and post other calculus problems in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top