I've figured it out, with some help from a friend.
I've attached an image to help explain.
I know there are a lot of lines, but it should be understandable. Dark blue are the altitudes, light blue are the perpendicular bisectors, brown is one median, black is Euler's line.
I've drawn Euler's line parallel to side AB. I've drawn a line through centroid G, perpendicular to side AB and parallel to altitude CC'. Now there are two similar triangles, namely CGH and GFX. Now we need a little bit of knowledge of the median: the centroid of a triangle always divides the medians in two parts with lengths that are proportional to each other at 2:1 (not sure what it's called, hope you understand). I can prove this as well, but that's not the point right now. It means that the sides of CGH are twice as long as those of GFX. This means that CH=2GX; GX=C'H => CH=2C'H. So, Euler's line is parallel to a side when the altitude that's perpendicular to that side is divided into two parts with proportions 2:1. Or, in other words, taken vertex V and the intersection V' of the altitude from that vertex with the side, VH=2V'H.