Evaluate ⌊ 1/a_1+1/a_2+....+1/a_{2008} ⌋

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
Click For Summary
SUMMARY

The discussion evaluates the expression ⌊ 1/a_1 + 1/a_2 + ... + 1/a_{2008} ⌋, where the sequence a_n is defined by a_1 = 1/3 and a_{k+1} = a_k^2 + a_k for k ≥ 2. The analysis shows that S(2008) is bounded between 8 and 9, leading to the conclusion that ⌊ S ⌋ = 8. The terms of the series are computed, and the growth of the sequence is demonstrated, confirming the rapid increase of a_n for k ≥ 6.

PREREQUISITES
  • Understanding of recurrence relations
  • Familiarity with sequences and series
  • Knowledge of floor functions in mathematics
  • Basic concepts of geometric series
NEXT STEPS
  • Study recurrence relations in depth, focusing on nonlinear sequences
  • Explore the properties of floor functions and their applications in number theory
  • Learn about convergence and divergence of series, particularly geometric series
  • Investigate advanced techniques for bounding series and sequences
USEFUL FOR

Mathematicians, students studying advanced calculus or discrete mathematics, and anyone interested in sequence analysis and series convergence.

juantheron
Messages
243
Reaction score
1
Consider the sequence $a_{n}$ given by $\displaystyle a_{1} = \frac{1}{3}$ and $\displaystyle a_{k+1}=a^2_{k}+a_{k}$ for $k\geq 2$and Let $\displaystyle S = \frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots \cdots +\frac{1}{a_{2008}}$. Then $\lfloor S \rfloor $ is
 
Mathematics news on Phys.org
jacks said:
Consider the sequence $a_{n}$ given by $\displaystyle a_{1} = \frac{1}{3}$ and $\displaystyle a_{k+1}=a^2_{k}+a_{k}$ for $k\geq 2$and Let $\displaystyle S = \frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots \cdots +\frac{1}{a_{2008}}$. Then $\lfloor S \rfloor $ is
[sp]
Note: I assume that the recurrence holds for $k\ge\bf1$.

Let us write $ b_n = \dfrac{1}{a_n}$, $S(n) = \sum_{k=1}^nb_k$, and $T(n) = \sum_{k=n}^{2008}b_k$. As $a_{n+1} > a_n^2$, we have $b_{n+1} < b_n^2$. If $b_n < 1$, comparison with the geometric progression of ratio $b_n$ gives:
$$T(n) < \frac{b_n}{1-b_n}.$$

We compute now the first few terms of the series:
$$
\begin{array}{c|c|c|c}
n&a_n&b_n&S(n)\\
\hline
1&0.3333&3.0000&3.0000\\
2&0.4444&2.2500&5.2500\\
3&0.6420&1.5577&6.8077\\
4&1.0541&0.9487&7.7564\\
5&2.1653&0.4618&8.2182\\
6&6.8536&0.1459&8.3641\\
\end{array}
$$
Using the remark above, we find $T(6) < \dfrac{b_6}{1-b_6} = 0.1708$. This shows that:
$$
S(5) = 8.2182 < S = S(2008) = S(5) + T(6) < 8.2182 + 0.1708 = 8.3890
$$
and therefore $\lfloor S\rfloor = 8$.
[/sp]
 
[sp]$\displaystyle x_{1} = \frac{1}{3}.$

$\displaystyle x_2=\dfrac{4}{9}$.

$\displaystyle x_3=\dfrac{52}{81}\in\left(\dfrac{5}{8},\dfrac{2}{3}\right)$.$\displaystyle x_4>\left(\dfrac{5}{8}\right)^2+\dfrac{5}{8}=\dfrac{65}{64}>1$;

$\displaystyle x_4<\left(\dfrac{2}{3}\right)^2+\dfrac{2}{3}=\dfrac{10}{9}$;$x_5>1^2+1=2$;

$\displaystyle x_5<\left(\dfrac{10}{9}\right)^2+\dfrac{10}{9}=\dfrac{190}{81}<\dfrac{12}{5}$;$x_6>2^2+2=6$;$\displaystyle \sum^{2008}_{k=1}\dfrac{1}{x_{k}}>\sum^{5}_{k=1}\dfrac{1}{x_{k}}>+3+\dfrac{9}{4}+\dfrac{3}{2}+\dfrac{9}{10}+\dfrac{5}{12}>8$.Beginning from $x_6$, the sequence $x_n$ is growing very fast.

For $k\ge 6: x_k>6^{k-5}$.

$\displaystyle \sum_{k=6}^{2008}\dfrac{1}{x_k}<\sum_{m=1}^{+\infty}\dfrac{1}{6^m}=\dfrac{1}{5}$.Results: $\displaystyle \sum^{2008}_{k=2}\dfrac{1}{x_{k}}=\sum^{5}_{k=1}\dfrac{1}{x_{k}}+\sum^{2008}_{k=6}\dfrac{1}{x_{k}}<+3+\dfrac{9}{4}+\dfrac{8}{5}+1+\dfrac{1}{2}+\dfrac{1}{5}<9$.So we have $\displaystyle8<\sum^{2008}_{k=1}\dfrac{1}{x_{k}}<9\Longrightarrow\left\lfloor \sum^{2008}_{k=1}\dfrac{1}{x_{k}}\right\rfloor=8$[/sp]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K