Evaluate ∠APR if ∠APQ=3∠APR and ∠PAQ=45°

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The problem evaluates the angle ∠APR in triangle PQR, given that ∠APQ = 3∠APR and ∠PAQ = 45°. By defining θ as ∠APR, the relationship leads to the equation 16x³ - 8x = 0, yielding the positive solution x = 1/√2. Consequently, θ is determined to be 22.5°, confirming that ∠APR = 22.5° and establishing that ∠QPR is a right angle.

PREREQUISITES
  • Understanding of triangle properties and angle relationships
  • Familiarity with trigonometric functions, specifically tangent
  • Knowledge of geometric constructions and circle theorems
  • Ability to manipulate algebraic equations involving trigonometric identities
NEXT STEPS
  • Study the properties of cyclic quadrilaterals and their implications in geometry
  • Learn about the derivation and applications of the tangent addition formulas
  • Explore geometric interpretations of trigonometric solutions in triangle problems
  • Investigate elegant geometric solutions to angle problems in triangles
USEFUL FOR

Mathematicians, geometry enthusiasts, and students tackling advanced trigonometric problems will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $A$ be the midpoint of the side $QR$ on a triangle $PQR$. Given that $\angle APQ=3\angle APR$ and $\angle PAQ=45^\circ$, evaluate $\angle APR$.
This is an unsolved problem I found @ AOPS.
 
Mathematics news on Phys.org
[sp]
[TIKZ]\coordinate [label=below left:{$Q$}] (Q) at (-5,0) ;
\coordinate [label=left:{$P$}] (P) at (-3.5,3.5) ;
\coordinate [label=below right:{$R$}] (R) at (5,0) ;
\coordinate [label=below:{$A$}] (A) at (0,0) ;
\coordinate [label=below:{$N$}] (N) at (-3.5,0) ;
\draw (P) -- node
{$x$} (N) ;
\node [fill=white] at (-3.4,2.85) {$3\theta$} ;
\draw [thick] (P) -- (Q) -- (R) -- cycle ;
\draw [thick] (A) -- (P) ;
\node at (-0.7,0.25) {$45^\circ$} ;
\node at (-2.5,2.85) {$\theta$} ;
\node at (-1.75,-0.25) {$x$} ;[/TIKZ]
Choose a unit of length so that $\overline{QA} = \overline{AR} = 1$. Let $PN$ be the perpendicular from $P$ to $QR$ and let $x = \overline{PN} = \overline{NA}.$ Write $\theta$ for $^\angle APR$, so that $^\angle APQ = 3\theta.$ Then $\tan(^\angle NPR) = \dfrac{1+x}x$, and $$\tan\theta = \tan(^\angle NPR - 45^\circ) = \frac{\frac{1+x}x - 1}{1 + \frac{1+x}x} = \frac1{2x+1}.$$ Similarly, $\tan(^\angle NPQ) = \dfrac{1-x}x$, and $$\tan(3\theta) = \tan(^\angle NPQ + 45^\circ) = \frac{\frac{1-x}x + 1}{1 - \frac{1-x}x} = \frac1{2x-1}.$$ But $\tan(3\theta) = \dfrac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}.$ So (*deep breath*) $$\frac1{2x-1} = \frac{\frac3{2x+1} - \frac1{(2x+1)^3}}{1 - \frac3{(2x+1)^2}}.$$ After multiplying out all the fractions (and in my case, doing so several times until I weeded out all the mistakes), this reduces to $16x^3 - 8x = 0$, for which the only positive solution is $x = \dfrac1{\sqrt2}.$
Thus $$\tan\theta = \frac 1{2x+1} = \frac1{\sqrt2 + 1} = \sqrt2 - 1.$$ The answer to the problem is then $^\angle APR = 22.5^\circ$, as you can check by verifying that $\tan(2\theta) = 1$.

Notice that $4\theta = 90^\circ.$ Hence $^\angle QPR$ is a right angle. I assume that there must be an elegant geometric solution to this problem which somehow exploits that fact, but I have no ideas along those lines.
[/sp]​
 
Hi Opalg!

I can't tell you enough how much I appreciate your participation to the two unsolved challenges of mine...and you definitely are on a roll to manage in solving these two hardest challenges that bothered me for quite some time...

I just want to thank you and I also want to tell you that you are my math hero who I hold in the highest esteem! (Blush)(Nod)(Sun)

I thought there might be an elegant geometric way to solve the problem too, and I will definitely try it when I have the time because it is too interesting a problem that one can hardly resist not to attempt at it!(Tmi)
 
anemone said:
I thought there might be an elegant geometric way to solve the problem too
[sp]As soon as you know that $x = 1/\sqrt2$, it follows (by looking at the triangle $PNA$) that $\overline{AP} = 1$. So $Q,P,R$ all lie on a circle centred at $A$. It then easily follows that $\theta = 22.5^\circ$, and also explains the right angle at $P$. But I don't see how to show that $\overline{AP} = 1$ without using the clunky trigonometric calculation.[/sp]
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K