MHB Evaluate $\frac{z-y}{z-x}$ for $x,\,y,\,z$ Real Numbers

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y,\,z$ be real numbers which satisfy the system below:

$x+\dfrac{1}{yz}=\dfrac{1}{5}$

$y+\dfrac{1}{xz}=-\dfrac{1}{15}$

$z+\dfrac{1}{xy}=\dfrac{1}{3}$

Evaluate $\dfrac{z-y}{z-x}$.
 
Mathematics news on Phys.org
anemone said:
Let $x,\,y,\,z$ be real numbers which satisfy the system below:

$x+\dfrac{1}{yz}=\dfrac{1}{5}$

$y+\dfrac{1}{xz}=-\dfrac{1}{15}$

$z+\dfrac{1}{xy}=\dfrac{1}{3}$

Evaluate $\dfrac{z-y}{z-x}$.

clearly x,y,z none of them is zero deviding 1st equation by x 2nd by y and 3rd by z we get

$1+\dfrac{1}{xyz}= \dfrac{1}{5x}=\dfrac{-1}{15y} = \dfrac{1}{3z}$
hence $5x=-15y=3z$
or $\dfrac{x}{z}= \dfrac{3}{5}$
$\dfrac{y}{z}= \dfrac{-1}{5}$
hence $\dfrac{z-y}{z-x}=\dfrac{1-\frac{y}{z}}{1-\frac{x}{z}}=\dfrac{1+\frac{1}{5}}{1-\frac{3}{5}}=3 $
 
Last edited:
kaliprasad said:
clearly x,y,z none of them is zero deviding 1st equation by x 2nd by y and 3rd by z we get

$1+\dfrac{1}{xyz}= \dfrac{1}{5x}=\dfrac{1}{15y} = \dfrac{1}{3z}$
hence $5x=15y=3z$
or $\dfrac{x}{z}= \dfrac{3}{5}$
$\dfrac{y}{z}= \dfrac{1}{5}$
hence $\dfrac{z-y}{z-x}=\dfrac{1-\frac{y}{z}}{1-\frac{x}{z}}=\dfrac{1-\frac{1}{5}}{1-\frac{3}{5}}=2 $

Thanks kaliprasad for participating...but:

Please note that the RHS of the second equation has a minus sign..
 
anemone said:
Thanks kaliprasad for participating...but:

Please note that the RHS of the second equation has a minus sign..

Thanks. I have done the correction based on the comment
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top