MHB Evaluate $\frac{z-y}{z-x}$ for $x,\,y,\,z$ Real Numbers

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion revolves around evaluating the expression \(\frac{z-y}{z-x}\) given a system of equations involving real numbers \(x\), \(y\), and \(z\). The equations are \(x + \frac{1}{yz} = \frac{1}{5}\), \(y + \frac{1}{xz} = -\frac{1}{15}\), and \(z + \frac{1}{xy} = \frac{1}{3}\). Participants engage in solving the system to find the values of \(x\), \(y\), and \(z\) and subsequently compute the desired expression. The discussion includes corrections and clarifications based on participant feedback. Ultimately, the goal is to derive a precise value for \(\frac{z-y}{z-x}\) based on the established relationships.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y,\,z$ be real numbers which satisfy the system below:

$x+\dfrac{1}{yz}=\dfrac{1}{5}$

$y+\dfrac{1}{xz}=-\dfrac{1}{15}$

$z+\dfrac{1}{xy}=\dfrac{1}{3}$

Evaluate $\dfrac{z-y}{z-x}$.
 
Mathematics news on Phys.org
anemone said:
Let $x,\,y,\,z$ be real numbers which satisfy the system below:

$x+\dfrac{1}{yz}=\dfrac{1}{5}$

$y+\dfrac{1}{xz}=-\dfrac{1}{15}$

$z+\dfrac{1}{xy}=\dfrac{1}{3}$

Evaluate $\dfrac{z-y}{z-x}$.

clearly x,y,z none of them is zero deviding 1st equation by x 2nd by y and 3rd by z we get

$1+\dfrac{1}{xyz}= \dfrac{1}{5x}=\dfrac{-1}{15y} = \dfrac{1}{3z}$
hence $5x=-15y=3z$
or $\dfrac{x}{z}= \dfrac{3}{5}$
$\dfrac{y}{z}= \dfrac{-1}{5}$
hence $\dfrac{z-y}{z-x}=\dfrac{1-\frac{y}{z}}{1-\frac{x}{z}}=\dfrac{1+\frac{1}{5}}{1-\frac{3}{5}}=3 $
 
Last edited:
kaliprasad said:
clearly x,y,z none of them is zero deviding 1st equation by x 2nd by y and 3rd by z we get

$1+\dfrac{1}{xyz}= \dfrac{1}{5x}=\dfrac{1}{15y} = \dfrac{1}{3z}$
hence $5x=15y=3z$
or $\dfrac{x}{z}= \dfrac{3}{5}$
$\dfrac{y}{z}= \dfrac{1}{5}$
hence $\dfrac{z-y}{z-x}=\dfrac{1-\frac{y}{z}}{1-\frac{x}{z}}=\dfrac{1-\frac{1}{5}}{1-\frac{3}{5}}=2 $

Thanks kaliprasad for participating...but:

Please note that the RHS of the second equation has a minus sign..
 
anemone said:
Thanks kaliprasad for participating...but:

Please note that the RHS of the second equation has a minus sign..

Thanks. I have done the correction based on the comment
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top