Evaluate $\frac{z-y}{z-x}$ for $x,\,y,\,z$ Real Numbers

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around evaluating the expression $\frac{z-y}{z-x}$ given a system of equations involving real numbers $x$, $y$, and $z$. The scope includes mathematical reasoning and problem-solving related to the provided equations.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Participants present a system of equations that $x$, $y$, and $z$ must satisfy, but the specific evaluations or manipulations of these equations are not detailed.
  • One participant acknowledges another's contribution but does not provide further clarification or resolution regarding the evaluation of the expression.
  • There is a mention of a correction made based on a previous comment, though the nature of the correction is not specified.

Areas of Agreement / Disagreement

The discussion does not appear to reach a consensus, as there are acknowledgments of contributions without clear resolutions or agreements on the evaluation of the expression.

Contextual Notes

The discussion lacks specific details on the methods used to evaluate the expression, and the implications of the system of equations remain unresolved.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y,\,z$ be real numbers which satisfy the system below:

$x+\dfrac{1}{yz}=\dfrac{1}{5}$

$y+\dfrac{1}{xz}=-\dfrac{1}{15}$

$z+\dfrac{1}{xy}=\dfrac{1}{3}$

Evaluate $\dfrac{z-y}{z-x}$.
 
Mathematics news on Phys.org
anemone said:
Let $x,\,y,\,z$ be real numbers which satisfy the system below:

$x+\dfrac{1}{yz}=\dfrac{1}{5}$

$y+\dfrac{1}{xz}=-\dfrac{1}{15}$

$z+\dfrac{1}{xy}=\dfrac{1}{3}$

Evaluate $\dfrac{z-y}{z-x}$.

clearly x,y,z none of them is zero deviding 1st equation by x 2nd by y and 3rd by z we get

$1+\dfrac{1}{xyz}= \dfrac{1}{5x}=\dfrac{-1}{15y} = \dfrac{1}{3z}$
hence $5x=-15y=3z$
or $\dfrac{x}{z}= \dfrac{3}{5}$
$\dfrac{y}{z}= \dfrac{-1}{5}$
hence $\dfrac{z-y}{z-x}=\dfrac{1-\frac{y}{z}}{1-\frac{x}{z}}=\dfrac{1+\frac{1}{5}}{1-\frac{3}{5}}=3 $
 
Last edited:
kaliprasad said:
clearly x,y,z none of them is zero deviding 1st equation by x 2nd by y and 3rd by z we get

$1+\dfrac{1}{xyz}= \dfrac{1}{5x}=\dfrac{1}{15y} = \dfrac{1}{3z}$
hence $5x=15y=3z$
or $\dfrac{x}{z}= \dfrac{3}{5}$
$\dfrac{y}{z}= \dfrac{1}{5}$
hence $\dfrac{z-y}{z-x}=\dfrac{1-\frac{y}{z}}{1-\frac{x}{z}}=\dfrac{1-\frac{1}{5}}{1-\frac{3}{5}}=2 $

Thanks kaliprasad for participating...but:

Please note that the RHS of the second equation has a minus sign..
 
anemone said:
Thanks kaliprasad for participating...but:

Please note that the RHS of the second equation has a minus sign..

Thanks. I have done the correction based on the comment
 

Similar threads

Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K