Evaluate Limit: $\lim_{n\rightarrow \infty } n(\frac{1}{(2n+1)^2} + \cdots)$

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
SUMMARY

The limit evaluated is $\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{\left ( 2n+1 \right )^2}+\frac{1}{\left ( 2n+3 \right )^2}+ ...+\frac{1}{\left ( 4n-1 \right )^2} \right ) \right )$. The series converges to a specific value as $n$ approaches infinity, confirming that the sum of the series behaves like $\frac{1}{n}$, leading to a limit of $\frac{1}{4}$. The discussion highlights the importance of recognizing the behavior of series and their convergence properties in calculus.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with series and convergence
  • Knowledge of asymptotic analysis
  • Basic algebraic manipulation of fractions
NEXT STEPS
  • Study the properties of convergent series in calculus
  • Learn about asymptotic notation and its applications
  • Explore advanced limit evaluation techniques
  • Investigate the behavior of series involving rational functions
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus, series convergence, and limit evaluation techniques.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate the limit:

$\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{\left ( 2n+1 \right )^2}+\frac{1}{\left ( 2n+3 \right )^2}+ ...+\frac{1}{\left ( 4n-1 \right )^2} \right ) \right )$

Hint:

Consider the function: $f(x)=\frac{1}{x^2}$ on a suitable interval ...
 
Last edited:
Physics news on Phys.org
lfdahl said:
Evaluate the limit:

$\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{\left ( 2n+1 \right )^2}+\frac{1}{\left ( 2n+3 \right )^2}+ ...+\frac{1}{\left ( 4n-1 \right )^2} \right ) \right )$

Hint:

Consider the function: $f(x)=\frac{1}{x^2}$ on a suitable interval ...$

Rewrite the expression as:
$$\lim_{n\rightarrow \infty} \frac{1}{n}\left(\frac{1}{(2+\frac{1}{n})^2}+\frac{1}{(2+\frac{3}{n})^2}+\frac{1}{(2+\frac{5}{n})^2}+\cdots +\frac{1}{(2+\frac{2n-1}{n})^2}\right)$$
$$=\lim_{n\rightarrow \infty} \frac{1}{n}\sum_{r=1}^{n} \frac{1}{(2+\frac{2r-1}{n})^2}$$
$$=\lim_{n\rightarrow \infty} \frac{1}{n}\sum_{r=1}^{n} \frac{1}{(2+\frac{2r}{n}-\frac{1}{n})^2}$$

Since $n\rightarrow \infty$, $1/n \rightarrow 0$ and the above limit can be written as the following definite integral:
$$\int_0^1 \frac{dx}{(2+2x)^2}=\frac{1}{4}\left(-\frac{1}{1+x}\right|_0^1=\boxed{\dfrac{1}{8}}$$
 
Last edited:
Pranav said:
Rewrite the expression as:
$$\lim_{n\rightarrow \infty} \frac{1}{n}\left(\frac{1}{(2+\frac{1}{n})^2}+\frac{1}{(2+\frac{2}{n})^2}+\frac{1}{(2+\frac{3}{n})^2}+\cdots +\frac{1}{(2+\frac{2n-1}{n})^2}\right)$$
$$=\lim_{n\rightarrow \infty} \frac{1}{n}\sum_{r=1}^{2n-1} \frac{1}{(2+\frac{r}{n})^2}$$
The above limit can be written as the following definite integral:
$$\int_0^2 \frac{dx}{(2+x)^2}=\left(-\frac{1}{2+x}\right|_0^2=\frac{-1}{4}+\frac{1}{2}=\boxed{\dfrac{1}{4}}$$

Good (and fast!) job, Pranav! - but:

You´re missing a factor 2 somewhere ...
 
Last edited:
lfdahl said:
Good (and fast!) job, Pranav! - but:

You´re missing a factor 2 somewhere ...

Sorry about that, I misread the problem. :o

Do you mean a factor of 1/2?
 
Yes :o
 
Solution by other:

Consider the function $f(x) = \frac{1}{x^2}$ on the interval [2;4].
If we divide this interval into $n$ subintervals of equal length $\frac{2}{n}$ using the points $x_k= 2 + \frac{2k}{n}$, $0 \le k \le n$, and choose our sample points to be the midpoints $c_k= 2 + \frac{2k-1}{n}$,
$1\le k \le n$, of these subintervals, the Riemann sum for these data becomes
\[\sum_{k=1}^{n}f(c_k)\Delta x_k = \sum_{k=1}^{n}f\left ( 2+\frac{2k-1}{n} \right )\frac{2}{n}=\sum_{k=1}^{n}\frac{2n}{(2n+2k-1)^2}\]
And the definition of definite integral gives
\[\lim_{n\rightarrow \infty }\sum_{k=1}^{n}\frac{2n}{(2n+2k-1)^2} =\int_{2}^{4}\frac{dx}{x^2}= \left [ -\frac{1}{x} \right ]_{2}^{4}=\frac{1}{4}\]
Therefore
\[\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{(2n+1)^2}+\frac{1}{(2n+3)^2}+ ...+\frac{1}{(4n-1)^2} \right ) \right )=\frac{1}{8}\]
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
2
Views
1K
Replies
6
Views
1K
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K