MHB Evaluate Limit: $\lim_{n\rightarrow \infty } n(\frac{1}{(2n+1)^2} + \cdots)$

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
The limit to evaluate is $\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{\left ( 2n+1 \right )^2}+\frac{1}{\left ( 2n+3 \right )^2}+ ...+\frac{1}{\left ( 4n-1 \right )^2} \right ) \right )$. The series inside the limit consists of terms that decrease in value as n increases, specifically the squares of odd numbers. The discussion highlights the importance of recognizing the asymptotic behavior of the series as n approaches infinity. Ultimately, the limit converges to a specific value, which is derived through careful analysis of the series and its behavior. The evaluation of this limit is crucial for understanding the convergence of similar series in mathematical analysis.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate the limit:

$\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{\left ( 2n+1 \right )^2}+\frac{1}{\left ( 2n+3 \right )^2}+ ...+\frac{1}{\left ( 4n-1 \right )^2} \right ) \right )$

Hint:

Consider the function: $f(x)=\frac{1}{x^2}$ on a suitable interval ...
 
Last edited:
Mathematics news on Phys.org
lfdahl said:
Evaluate the limit:

$\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{\left ( 2n+1 \right )^2}+\frac{1}{\left ( 2n+3 \right )^2}+ ...+\frac{1}{\left ( 4n-1 \right )^2} \right ) \right )$

Hint:

Consider the function: $f(x)=\frac{1}{x^2}$ on a suitable interval ...$

Rewrite the expression as:
$$\lim_{n\rightarrow \infty} \frac{1}{n}\left(\frac{1}{(2+\frac{1}{n})^2}+\frac{1}{(2+\frac{3}{n})^2}+\frac{1}{(2+\frac{5}{n})^2}+\cdots +\frac{1}{(2+\frac{2n-1}{n})^2}\right)$$
$$=\lim_{n\rightarrow \infty} \frac{1}{n}\sum_{r=1}^{n} \frac{1}{(2+\frac{2r-1}{n})^2}$$
$$=\lim_{n\rightarrow \infty} \frac{1}{n}\sum_{r=1}^{n} \frac{1}{(2+\frac{2r}{n}-\frac{1}{n})^2}$$

Since $n\rightarrow \infty$, $1/n \rightarrow 0$ and the above limit can be written as the following definite integral:
$$\int_0^1 \frac{dx}{(2+2x)^2}=\frac{1}{4}\left(-\frac{1}{1+x}\right|_0^1=\boxed{\dfrac{1}{8}}$$
 
Last edited:
Pranav said:
Rewrite the expression as:
$$\lim_{n\rightarrow \infty} \frac{1}{n}\left(\frac{1}{(2+\frac{1}{n})^2}+\frac{1}{(2+\frac{2}{n})^2}+\frac{1}{(2+\frac{3}{n})^2}+\cdots +\frac{1}{(2+\frac{2n-1}{n})^2}\right)$$
$$=\lim_{n\rightarrow \infty} \frac{1}{n}\sum_{r=1}^{2n-1} \frac{1}{(2+\frac{r}{n})^2}$$
The above limit can be written as the following definite integral:
$$\int_0^2 \frac{dx}{(2+x)^2}=\left(-\frac{1}{2+x}\right|_0^2=\frac{-1}{4}+\frac{1}{2}=\boxed{\dfrac{1}{4}}$$

Good (and fast!) job, Pranav! - but:

You´re missing a factor 2 somewhere ...
 
Last edited:
lfdahl said:
Good (and fast!) job, Pranav! - but:

You´re missing a factor 2 somewhere ...

Sorry about that, I misread the problem. :o

Do you mean a factor of 1/2?
 
Yes :o
 
Solution by other:

Consider the function $f(x) = \frac{1}{x^2}$ on the interval [2;4].
If we divide this interval into $n$ subintervals of equal length $\frac{2}{n}$ using the points $x_k= 2 + \frac{2k}{n}$, $0 \le k \le n$, and choose our sample points to be the midpoints $c_k= 2 + \frac{2k-1}{n}$,
$1\le k \le n$, of these subintervals, the Riemann sum for these data becomes
\[\sum_{k=1}^{n}f(c_k)\Delta x_k = \sum_{k=1}^{n}f\left ( 2+\frac{2k-1}{n} \right )\frac{2}{n}=\sum_{k=1}^{n}\frac{2n}{(2n+2k-1)^2}\]
And the definition of definite integral gives
\[\lim_{n\rightarrow \infty }\sum_{k=1}^{n}\frac{2n}{(2n+2k-1)^2} =\int_{2}^{4}\frac{dx}{x^2}= \left [ -\frac{1}{x} \right ]_{2}^{4}=\frac{1}{4}\]
Therefore
\[\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{(2n+1)^2}+\frac{1}{(2n+3)^2}+ ...+\frac{1}{(4n-1)^2} \right ) \right )=\frac{1}{8}\]
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
Replies
5
Views
2K
Replies
1
Views
2K
Replies
17
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K