Evaluate Limit: $\lim_{n\rightarrow \infty } n(\frac{1}{(2n+1)^2} + \cdots)$

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary

Discussion Overview

The discussion revolves around evaluating the limit $\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{\left ( 2n+1 \right )^2}+\frac{1}{\left ( 2n+3 \right )^2}+ ...+\frac{1}{\left ( 4n-1 \right )^2} \right ) \right )$. Participants explore different approaches to this limit, with a focus on mathematical reasoning and potential solutions.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose various methods to evaluate the limit, suggesting different mathematical techniques.
  • Others express confusion or misinterpretation of the problem, leading to corrections of earlier statements.
  • A later reply acknowledges a mistake in reading the problem, indicating the complexity of the limit evaluation.

Areas of Agreement / Disagreement

The discussion remains unresolved, with multiple competing views and approaches presented without a clear consensus on the evaluation of the limit.

Contextual Notes

Participants have not fully clarified all assumptions or provided complete mathematical steps, leaving some aspects of the limit evaluation open to interpretation.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate the limit:

$\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{\left ( 2n+1 \right )^2}+\frac{1}{\left ( 2n+3 \right )^2}+ ...+\frac{1}{\left ( 4n-1 \right )^2} \right ) \right )$

Hint:

Consider the function: $f(x)=\frac{1}{x^2}$ on a suitable interval ...
 
Last edited:
Physics news on Phys.org
lfdahl said:
Evaluate the limit:

$\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{\left ( 2n+1 \right )^2}+\frac{1}{\left ( 2n+3 \right )^2}+ ...+\frac{1}{\left ( 4n-1 \right )^2} \right ) \right )$

Hint:

Consider the function: $f(x)=\frac{1}{x^2}$ on a suitable interval ...$

Rewrite the expression as:
$$\lim_{n\rightarrow \infty} \frac{1}{n}\left(\frac{1}{(2+\frac{1}{n})^2}+\frac{1}{(2+\frac{3}{n})^2}+\frac{1}{(2+\frac{5}{n})^2}+\cdots +\frac{1}{(2+\frac{2n-1}{n})^2}\right)$$
$$=\lim_{n\rightarrow \infty} \frac{1}{n}\sum_{r=1}^{n} \frac{1}{(2+\frac{2r-1}{n})^2}$$
$$=\lim_{n\rightarrow \infty} \frac{1}{n}\sum_{r=1}^{n} \frac{1}{(2+\frac{2r}{n}-\frac{1}{n})^2}$$

Since $n\rightarrow \infty$, $1/n \rightarrow 0$ and the above limit can be written as the following definite integral:
$$\int_0^1 \frac{dx}{(2+2x)^2}=\frac{1}{4}\left(-\frac{1}{1+x}\right|_0^1=\boxed{\dfrac{1}{8}}$$
 
Last edited:
Pranav said:
Rewrite the expression as:
$$\lim_{n\rightarrow \infty} \frac{1}{n}\left(\frac{1}{(2+\frac{1}{n})^2}+\frac{1}{(2+\frac{2}{n})^2}+\frac{1}{(2+\frac{3}{n})^2}+\cdots +\frac{1}{(2+\frac{2n-1}{n})^2}\right)$$
$$=\lim_{n\rightarrow \infty} \frac{1}{n}\sum_{r=1}^{2n-1} \frac{1}{(2+\frac{r}{n})^2}$$
The above limit can be written as the following definite integral:
$$\int_0^2 \frac{dx}{(2+x)^2}=\left(-\frac{1}{2+x}\right|_0^2=\frac{-1}{4}+\frac{1}{2}=\boxed{\dfrac{1}{4}}$$

Good (and fast!) job, Pranav! - but:

You´re missing a factor 2 somewhere ...
 
Last edited:
lfdahl said:
Good (and fast!) job, Pranav! - but:

You´re missing a factor 2 somewhere ...

Sorry about that, I misread the problem. :o

Do you mean a factor of 1/2?
 
Yes :o
 
Solution by other:

Consider the function $f(x) = \frac{1}{x^2}$ on the interval [2;4].
If we divide this interval into $n$ subintervals of equal length $\frac{2}{n}$ using the points $x_k= 2 + \frac{2k}{n}$, $0 \le k \le n$, and choose our sample points to be the midpoints $c_k= 2 + \frac{2k-1}{n}$,
$1\le k \le n$, of these subintervals, the Riemann sum for these data becomes
\[\sum_{k=1}^{n}f(c_k)\Delta x_k = \sum_{k=1}^{n}f\left ( 2+\frac{2k-1}{n} \right )\frac{2}{n}=\sum_{k=1}^{n}\frac{2n}{(2n+2k-1)^2}\]
And the definition of definite integral gives
\[\lim_{n\rightarrow \infty }\sum_{k=1}^{n}\frac{2n}{(2n+2k-1)^2} =\int_{2}^{4}\frac{dx}{x^2}= \left [ -\frac{1}{x} \right ]_{2}^{4}=\frac{1}{4}\]
Therefore
\[\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{(2n+1)^2}+\frac{1}{(2n+3)^2}+ ...+\frac{1}{(4n-1)^2} \right ) \right )=\frac{1}{8}\]
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
2
Views
1K
Replies
6
Views
1K
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K