MHB Evaluate Limit: $\lim_{n\rightarrow \infty } n(\frac{1}{(2n+1)^2} + \cdots)$

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Limit
AI Thread Summary
The limit to evaluate is $\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{\left ( 2n+1 \right )^2}+\frac{1}{\left ( 2n+3 \right )^2}+ ...+\frac{1}{\left ( 4n-1 \right )^2} \right ) \right )$. The series inside the limit consists of terms that decrease in value as n increases, specifically the squares of odd numbers. The discussion highlights the importance of recognizing the asymptotic behavior of the series as n approaches infinity. Ultimately, the limit converges to a specific value, which is derived through careful analysis of the series and its behavior. The evaluation of this limit is crucial for understanding the convergence of similar series in mathematical analysis.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate the limit:

$\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{\left ( 2n+1 \right )^2}+\frac{1}{\left ( 2n+3 \right )^2}+ ...+\frac{1}{\left ( 4n-1 \right )^2} \right ) \right )$

Hint:

Consider the function: $f(x)=\frac{1}{x^2}$ on a suitable interval ...
 
Last edited:
Mathematics news on Phys.org
lfdahl said:
Evaluate the limit:

$\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{\left ( 2n+1 \right )^2}+\frac{1}{\left ( 2n+3 \right )^2}+ ...+\frac{1}{\left ( 4n-1 \right )^2} \right ) \right )$

Hint:

Consider the function: $f(x)=\frac{1}{x^2}$ on a suitable interval ...$

Rewrite the expression as:
$$\lim_{n\rightarrow \infty} \frac{1}{n}\left(\frac{1}{(2+\frac{1}{n})^2}+\frac{1}{(2+\frac{3}{n})^2}+\frac{1}{(2+\frac{5}{n})^2}+\cdots +\frac{1}{(2+\frac{2n-1}{n})^2}\right)$$
$$=\lim_{n\rightarrow \infty} \frac{1}{n}\sum_{r=1}^{n} \frac{1}{(2+\frac{2r-1}{n})^2}$$
$$=\lim_{n\rightarrow \infty} \frac{1}{n}\sum_{r=1}^{n} \frac{1}{(2+\frac{2r}{n}-\frac{1}{n})^2}$$

Since $n\rightarrow \infty$, $1/n \rightarrow 0$ and the above limit can be written as the following definite integral:
$$\int_0^1 \frac{dx}{(2+2x)^2}=\frac{1}{4}\left(-\frac{1}{1+x}\right|_0^1=\boxed{\dfrac{1}{8}}$$
 
Last edited:
Pranav said:
Rewrite the expression as:
$$\lim_{n\rightarrow \infty} \frac{1}{n}\left(\frac{1}{(2+\frac{1}{n})^2}+\frac{1}{(2+\frac{2}{n})^2}+\frac{1}{(2+\frac{3}{n})^2}+\cdots +\frac{1}{(2+\frac{2n-1}{n})^2}\right)$$
$$=\lim_{n\rightarrow \infty} \frac{1}{n}\sum_{r=1}^{2n-1} \frac{1}{(2+\frac{r}{n})^2}$$
The above limit can be written as the following definite integral:
$$\int_0^2 \frac{dx}{(2+x)^2}=\left(-\frac{1}{2+x}\right|_0^2=\frac{-1}{4}+\frac{1}{2}=\boxed{\dfrac{1}{4}}$$

Good (and fast!) job, Pranav! - but:

You´re missing a factor 2 somewhere ...
 
Last edited:
lfdahl said:
Good (and fast!) job, Pranav! - but:

You´re missing a factor 2 somewhere ...

Sorry about that, I misread the problem. :o

Do you mean a factor of 1/2?
 
Yes :o
 
Solution by other:

Consider the function $f(x) = \frac{1}{x^2}$ on the interval [2;4].
If we divide this interval into $n$ subintervals of equal length $\frac{2}{n}$ using the points $x_k= 2 + \frac{2k}{n}$, $0 \le k \le n$, and choose our sample points to be the midpoints $c_k= 2 + \frac{2k-1}{n}$,
$1\le k \le n$, of these subintervals, the Riemann sum for these data becomes
\[\sum_{k=1}^{n}f(c_k)\Delta x_k = \sum_{k=1}^{n}f\left ( 2+\frac{2k-1}{n} \right )\frac{2}{n}=\sum_{k=1}^{n}\frac{2n}{(2n+2k-1)^2}\]
And the definition of definite integral gives
\[\lim_{n\rightarrow \infty }\sum_{k=1}^{n}\frac{2n}{(2n+2k-1)^2} =\int_{2}^{4}\frac{dx}{x^2}= \left [ -\frac{1}{x} \right ]_{2}^{4}=\frac{1}{4}\]
Therefore
\[\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{(2n+1)^2}+\frac{1}{(2n+3)^2}+ ...+\frac{1}{(4n-1)^2} \right ) \right )=\frac{1}{8}\]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top