MHB Evaluate logarithm of a number

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Logarithm
AI Thread Summary
The discussion focuses on evaluating $\lfloor \log_x 7^{100} \rfloor$ using given logarithmic bounds for 2, 3, and 5. Through linear interpolation, the participants derive the bounds for $\log_x 49$, which leads to the conclusion that $0.9 < \log_x 49 < 0.914$. Since $49 = 7^2$, it follows that $0.45 < \log_x 7 < 0.457$. Ultimately, this results in the conclusion that $45 < \log_x 7^{100} < 45.9$, confirming that $\lfloor \log_x 7^{100} \rfloor = 45$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given that

$0.375<\log_x 5<0.376$

$0.256<\log_x 3<0.257$

$0.161<\log_x 2<0.162$

evaluate $\lfloor \log_x 7^{100} \rfloor$.
 
Last edited:
Mathematics news on Phys.org
By brute force, we see that $x=73$ satisfy all of the inequalities, hence,
$$\lfloor\log_x{7^{100}}\rfloor$$
$$=\lfloor100\log_{73}{7}\rfloor$$
$$=45$$
 
anemone said:
Given that

$0.375<\log_x 5<0.376$

$0.256<\log_x 3<0.257$

$0.161<\log_x 2<0.162$

evaluate $\lfloor \log_x 7^{100} \rfloor$.
$0.470<\log_x 7.5=\log_x \dfrac {3\times 5}{2}=\log_x 3+\log_x 5 -\log_x 2 <0.471$
now I will use linear interpolation :
let:$y=\log_x 7$
$\dfrac {\log_x {7.5 -y}}{7.5-7}\approx \dfrac {\log_x {7.5 -\log _x 5}}{7.5-5}$
$ y \approx 0.453$
$\therefore \lfloor \log_x 7^{100} \rfloor=45$
 
Last edited:
I t seemed not easy to get $\log_x 7,\, directly \,\, from ,\log _x 2, \log_x 3, and \log _x 5$
instead I get $\log_x 7.5$
so I use the method of linear interpolation
 
Last edited:
anemone said:
Given that

$0.375<\log_x 5<0.376$

$0.256<\log_x 3<0.257$

$0.161<\log_x 2<0.162$

evaluate $\lfloor \log_x 7^{100} \rfloor$.
[sp]$\log_x 48 = 4\log_x2 + \log_x3 >4\times0.161 + 0.256 = 0.9$.

$\log_x50 = \log_x2 + 2\log_x5 < 0.162 + 2\times 0.376 = 0.914$.

Therefore $0.9 < \log_x49 < 0.914$. But $49 = 7^2$, so $\log_x7 = \frac12\log_x49$ and $0.45 < \log_x7 < 0.457$. Finally, $45 < \log_x 7^{100} < 45.9$ and so $\lfloor \log_x 7^{100} \rfloor = 45$.[/sp]
 
Last edited:
Thank you all for participating and yes, 45 is the correct answer!:)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top