Evaluate the Legendre symbol ## (999|823) ##

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Legendre Symbol
AI Thread Summary
The Legendre symbol (999|823) is evaluated by first reducing 999 modulo 823, yielding 999 ≡ 176 (mod 823). This leads to the conclusion that (999|823) = (176|823) = (16|823)(11|823) = (4²|823)(11|823). Since (4²|823) = 1, it simplifies to (999|823) = (11|823). Using the quadratic reciprocity law, it is determined that (999|823) = -1, confirming that 999 is a quadratic nonresidue modulo 823.
Math100
Messages
813
Reaction score
229
Homework Statement
Evaluate the Legendre symbol ## (999|823) ##.
(Note that ## 823 ## is prime.)
Relevant Equations
Let ## p ## be an odd prime. If ## n\not\equiv 0\pmod {p} ##, we define Legendre's symbol ## (n|p) ## as follows:
## (n|p)=+1 ## if ## nRp ##, and ## (n|p)=-1 ## if ## n\overline{R}p ##.
If ## n\equiv 0\pmod {p} ##, we define ## (n|p)=0 ##.
Consider ## (999|823) ##.
Then ## 999\equiv 176\pmod {823} ##.
This implies ## (999|823)=(176|823)=(16|823)(11|823)=(4^{2}|823)(11|823) ##.
Since ## (a^{2}|p)=1 ##, it follows that ## (4^{2}|823)=1 ##.
Thus ## (999|823)=(11|823) ##.
Applying the Quadratic reciprocity law, we have that
## (11|823)(823|11)=(-1)^{(11-1)(823-1)/4}=(-1)^{2055}=-1 ##.
Therefore, ## (999|823)=-1 ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Evaluate the Legendre symbol ## (999|823) ##.
(Note that ## 823 ## is prime.)
Relevant Equations:: Let ## p ## be an odd prime. If ## n\not\equiv 0\pmod {p} ##, we define Legendre's symbol ## (n|p) ## as follows:
## (n|p)=+1 ## if ## nRp ##, and ## (n|p)=-1 ## if ## n\overline{R}p ##.
If ## n\equiv 0\pmod {p} ##, we define ## (n|p)=0 ##.

Consider ## (999|823) ##.
Then ## 999\equiv 176\pmod {823} ##.
This implies ## (999|823)=(176|823)=(16|823)(11|823)=(4^{2}|823)(11|823) ##.
Since ## (a^{2}|p)=1 ##, it follows that ## (4^{2}|823)=1 ##.
Thus ## (999|823)=(11|823) ##.
Applying the Quadratic reciprocity law, we have that
## (11|823)(823|11)=(-1)^{(11-1)(823-1)/4}=(-1)^{2055}=-1 ##.
Therefore, ## (999|823)=-1 ##.
Looks good, although the notation is odd and I can only guess what ##nRp## means.

With Euler's criterion, we get
\begin{align*}
\left(\dfrac{999}{823}\right)&=\left(\dfrac{176}{823}\right)=176^{411}=\ldots = 822 = -1 \pmod{823}
\end{align*}
 
fresh_42 said:
Looks good, although the notation is odd and I can only guess what ##nRp## means.

With Euler's criterion, we get
\begin{align*}
\left(\dfrac{999}{823}\right)&=\left(\dfrac{176}{823}\right)=176^{411}=\ldots = 822 = -1 \pmod{823}
\end{align*}
I think ## nRp ## means that ## n ## is a quadratic residue mod ## p ##. And ## n\overline{R}p ## if ## n ## is a quadratic nonresidue mod ## p ##. But how did you get ## 176^{411}=...=822 ##?
 
Math100 said:
I think ## nRp ## means that ## n ## is a quadratic residue mod ## p ##. And ## n\overline{R}p ## if ## n ## is a quadratic nonresidue mod ## p ##.
Sure. I know. But the acronym is unusual.
Math100 said:
But how did you get ## 176^{411}=...=822 ##?
I got it with WA but you have solved such equations before. ##411=3\cdot 137## should help a bit.
 
Back
Top