Evaluate the Legendre symbol ## (999|823) ##

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Legendre Symbol
Click For Summary
SUMMARY

The evaluation of the Legendre symbol ## (999|823) ## concludes that ## (999|823) = -1 ##. This is derived from the equivalence ## 999 \equiv 176 \pmod{823} ##, leading to the simplification ## (999|823) = (11|823) ##. By applying the Quadratic reciprocity law, it is established that ## (11|823)(823|11) = -1 ##, confirming the result. Euler's criterion further supports this conclusion, showing that ## 176^{411} \equiv 822 \equiv -1 \pmod{823} ##.

PREREQUISITES
  • Understanding of Legendre symbols and their properties
  • Familiarity with Quadratic reciprocity law
  • Knowledge of Euler's criterion in number theory
  • Basic modular arithmetic concepts
NEXT STEPS
  • Study the properties of Legendre symbols in detail
  • Explore the applications of Quadratic reciprocity in number theory
  • Learn about Euler's criterion and its implications for quadratic residues
  • Investigate advanced modular arithmetic techniques and their uses
USEFUL FOR

Mathematicians, number theorists, and students studying advanced topics in modular arithmetic and quadratic residues will benefit from this discussion.

Math100
Messages
817
Reaction score
230
Homework Statement
Evaluate the Legendre symbol ## (999|823) ##.
(Note that ## 823 ## is prime.)
Relevant Equations
Let ## p ## be an odd prime. If ## n\not\equiv 0\pmod {p} ##, we define Legendre's symbol ## (n|p) ## as follows:
## (n|p)=+1 ## if ## nRp ##, and ## (n|p)=-1 ## if ## n\overline{R}p ##.
If ## n\equiv 0\pmod {p} ##, we define ## (n|p)=0 ##.
Consider ## (999|823) ##.
Then ## 999\equiv 176\pmod {823} ##.
This implies ## (999|823)=(176|823)=(16|823)(11|823)=(4^{2}|823)(11|823) ##.
Since ## (a^{2}|p)=1 ##, it follows that ## (4^{2}|823)=1 ##.
Thus ## (999|823)=(11|823) ##.
Applying the Quadratic reciprocity law, we have that
## (11|823)(823|11)=(-1)^{(11-1)(823-1)/4}=(-1)^{2055}=-1 ##.
Therefore, ## (999|823)=-1 ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Evaluate the Legendre symbol ## (999|823) ##.
(Note that ## 823 ## is prime.)
Relevant Equations:: Let ## p ## be an odd prime. If ## n\not\equiv 0\pmod {p} ##, we define Legendre's symbol ## (n|p) ## as follows:
## (n|p)=+1 ## if ## nRp ##, and ## (n|p)=-1 ## if ## n\overline{R}p ##.
If ## n\equiv 0\pmod {p} ##, we define ## (n|p)=0 ##.

Consider ## (999|823) ##.
Then ## 999\equiv 176\pmod {823} ##.
This implies ## (999|823)=(176|823)=(16|823)(11|823)=(4^{2}|823)(11|823) ##.
Since ## (a^{2}|p)=1 ##, it follows that ## (4^{2}|823)=1 ##.
Thus ## (999|823)=(11|823) ##.
Applying the Quadratic reciprocity law, we have that
## (11|823)(823|11)=(-1)^{(11-1)(823-1)/4}=(-1)^{2055}=-1 ##.
Therefore, ## (999|823)=-1 ##.
Looks good, although the notation is odd and I can only guess what ##nRp## means.

With Euler's criterion, we get
\begin{align*}
\left(\dfrac{999}{823}\right)&=\left(\dfrac{176}{823}\right)=176^{411}=\ldots = 822 = -1 \pmod{823}
\end{align*}
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
Looks good, although the notation is odd and I can only guess what ##nRp## means.

With Euler's criterion, we get
\begin{align*}
\left(\dfrac{999}{823}\right)&=\left(\dfrac{176}{823}\right)=176^{411}=\ldots = 822 = -1 \pmod{823}
\end{align*}
I think ## nRp ## means that ## n ## is a quadratic residue mod ## p ##. And ## n\overline{R}p ## if ## n ## is a quadratic nonresidue mod ## p ##. But how did you get ## 176^{411}=...=822 ##?
 
Math100 said:
I think ## nRp ## means that ## n ## is a quadratic residue mod ## p ##. And ## n\overline{R}p ## if ## n ## is a quadratic nonresidue mod ## p ##.
Sure. I know. But the acronym is unusual.
Math100 said:
But how did you get ## 176^{411}=...=822 ##?
I got it with WA but you have solved such equations before. ##411=3\cdot 137## should help a bit.
 
  • Like
Likes   Reactions: Math100

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K