MHB Evaluate the product ∏(1+10^(-2^n))

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Product
Click For Summary
The discussion focuses on evaluating the infinite product ∏(1+10^(-2^n)). Participants express appreciation for the clever solutions provided, particularly from a user named kaliprasad. The evaluation of this product is a mathematical challenge that invites contributions and insights from the community. The conversation highlights the collaborative nature of problem-solving in mathematical forums. Overall, the thread emphasizes the importance of sharing solutions and engaging with complex mathematical concepts.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate:

$$\prod_{n=1}^{\infty}\left(1+10^{-2^n}\right)$$
 
Mathematics news on Phys.org
lfdahl said:
Evaluate:

$$\prod_{n=1}^{\infty}\left(1+10^{-2^n}\right)$$

Llet $x=\prod_{n=1}^{\infty}
(1+10^{-2^n})$
Using $(1-10^{-2^n})(1+10^{-2^n}) = (1+10^{-2^{n+1}})$
We have
$x(1-10^{-2^1})=(1-10^{-2^1})\prod_{n=1}^{\infty}(1+10^{-2^n})$
$=(1-10^{-2^2})\prod_{n=2}^{\infty}(1+10^{-2^n})$
$=\lim{n=\infty}(1+10^{-2^n}) = 1$
or x * .99 = 1 or $x = \frac{1}{.99}=\frac{100}{99}$
 
kaliprasad said:
Llet $x=\prod_{n=1}^{\infty}
(1+10^{-2^n})$
Using $(1-10^{-2^n})(1+10^{-2^n}) = (1+10^{-2^{n+1}})$
We have
$x(1-10^{-2^1})=(1-10^{-2^1})\prod_{n=1}^{\infty}(1+10^{-2^n})$
$=(1-10^{-2^2})\prod_{n=2}^{\infty}(1+10^{-2^n})$
$=\lim{n=\infty}(1+10^{-2^n}) = 1$
or x * .99 = 1 or $x = \frac{1}{.99}=\frac{100}{99}$

Thankyou for a clever solution, kaliprasad! - and for your participation
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
20
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K