MHB Evaluate the product ∏(1+10^(-2^n))

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Product
Click For Summary
The discussion focuses on evaluating the infinite product ∏(1+10^(-2^n)). Participants express appreciation for the clever solutions provided, particularly from a user named kaliprasad. The evaluation of this product is a mathematical challenge that invites contributions and insights from the community. The conversation highlights the collaborative nature of problem-solving in mathematical forums. Overall, the thread emphasizes the importance of sharing solutions and engaging with complex mathematical concepts.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate:

$$\prod_{n=1}^{\infty}\left(1+10^{-2^n}\right)$$
 
Mathematics news on Phys.org
lfdahl said:
Evaluate:

$$\prod_{n=1}^{\infty}\left(1+10^{-2^n}\right)$$

Llet $x=\prod_{n=1}^{\infty}
(1+10^{-2^n})$
Using $(1-10^{-2^n})(1+10^{-2^n}) = (1+10^{-2^{n+1}})$
We have
$x(1-10^{-2^1})=(1-10^{-2^1})\prod_{n=1}^{\infty}(1+10^{-2^n})$
$=(1-10^{-2^2})\prod_{n=2}^{\infty}(1+10^{-2^n})$
$=\lim{n=\infty}(1+10^{-2^n}) = 1$
or x * .99 = 1 or $x = \frac{1}{.99}=\frac{100}{99}$
 
kaliprasad said:
Llet $x=\prod_{n=1}^{\infty}
(1+10^{-2^n})$
Using $(1-10^{-2^n})(1+10^{-2^n}) = (1+10^{-2^{n+1}})$
We have
$x(1-10^{-2^1})=(1-10^{-2^1})\prod_{n=1}^{\infty}(1+10^{-2^n})$
$=(1-10^{-2^2})\prod_{n=2}^{\infty}(1+10^{-2^n})$
$=\lim{n=\infty}(1+10^{-2^n}) = 1$
or x * .99 = 1 or $x = \frac{1}{.99}=\frac{100}{99}$

Thankyou for a clever solution, kaliprasad! - and for your participation
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K