MHB Evaluating an Integral: Laplace Transform Method

Click For Summary
The discussion focuses on evaluating the integral ∫₀^∞ (cos(mx)/(a²+x²)) dx using the Laplace transform method instead of contour integration. The user breaks the problem into three parts, successfully completing the first two: showing that ∫₀^∞ e^(-t²x²) cos(mx) dx equals (√π/(2t)) e^(-m²/(4t²)), and that ∫₀^∞ e^(-(a²t² + m²/(4t²))) dt equals (√π/(2a)) e^(-am). The third part, which involves evaluating the original integral using the derived results, was initially challenging but is now considered trivial by the user. The thread illustrates a successful application of the Laplace transform in integral evaluation.
polygamma
Messages
227
Reaction score
0
The typical way to evaluate $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx$ is by contour integration.

In a recent thread I evaluated that integral using the Laplace transform.

http://mathhelpboards.com/analysis-50/advanced-integration-problem-9129.html#post42551My challenge question is to use the fact that $$ \frac{1}{a^{2}+x^{2}} = 2 \int_{0}^{\infty} t e^{-(a^{2}+x^{2}) t^{2}} \ dt $$ to show that

$$\int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx = \frac{\pi}{2a} e^{-am} .$$
 
Last edited:
Mathematics news on Phys.org
I'm going to break the problem into three parts.1) Show that $ \displaystyle \int_{0}^{\infty} e^{-t^{2} x^{2}} \cos (mx) \ dx = \frac{\sqrt{\pi}}{2t} e^{-m^{2}/(4t^{2})}$.2) Show that $ \displaystyle \int_{0}^{\infty} e^{-[a^{2}t^{2} + m^{2}/(4t^{2})]} \ dt = \frac{\sqrt{\pi}}{2a} e^{-am}$.3) Evaluate $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx$ using the fact that $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx= 2 \int_{0}^{\infty} \int_{0}^{\infty} \cos(mx) t e^{-(a^{2}+x^{2}) t^{2}} \ dt \ dx $.
 
Last edited:
Random Variable said:
I'm going to break the problem into three parts.1) Show that $ \displaystyle \int_{0}^{\infty} e^{-t^{2} x^{2}} \cos (mx) \ dx = \frac{\sqrt{\pi}}{2t} e^{-m^{2}/(4t^{2})}$.2) Show that $ \displaystyle \int_{0}^{\infty} e^{-[a^{2}t^{2} + m^{2}/(4t^{2})]} \ dt = \frac{\sqrt{\pi}}{2a} e^{-am}$.3) Evaluate $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx$ using the fact that $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx= 2 \int_{0}^{\infty} \int_{0}^{\infty} \cos(mx) t e^{-(a^{2}+x^{2}) t^{2}} \ dt \ dx $.

I have figured out the first two parts, still working on third. :)

Woops, third one is trivial now. :p
Problem 1.
Let
$$I(m)=\int_0^{\infty} e^{-t^2x^2}\cos(mx)\,\,dx$$
Differentiate wrt $m$,
$$I'(m)=-\int_0^{\infty} xe^{-t^2x^2}\sin(mx)\,\,dx$$
Integrate by parts and using the fact that $\int xe^{-t^2x^2}dx=-e^{-t^2x^2}/(2t^2)$, we get:
$$I'(m)=-\frac{mI(m)}{2t^2}$$
Solving the differential equation,
$$\ln I(m)=-\frac{m^2}{4t^2}+C$$
Since $I(0)=\frac{\sqrt{\pi}}{2t}$, we have $C=\ln(I(0))$, hence
$$\ln\left(\frac{I(m)}{I(0)}\right)=-\frac{m^2}{4t^2}$$
$$\Rightarrow I(m)=I(0)e^{-m^2/(4t^2)}=\frac{\sqrt{\pi}}{2t}e^{-m^2/(4t^2)}$$

-----------------------------
Problem 2.
Let
$$I(m)=\int_0^{\infty} e^{-(a^2t^2+m^2/(4t^2))}dt=e^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\,dt$$

Differentiate wrt m to get
$$I'(m)=-ae^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\,dt+2e^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\left(a-\frac{m}{t^2}\right)\,dt$$
I rewrite $a-m/t^2$ as $2a-a-m/t^2$ and split the integral as follows:
$$I'(m)=-aI(m)+4ae^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\,dt-2e^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\left(a+\frac{m}{t^2}\right)\,dt$$
$$I'(m)=3aI-2e^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\left(a+\frac{m}{t^2}\right)\,dt$$
Use the substitution $at-m/t=u$ in the integral.
$$\Rightarrow I'(m)=3aI(m)-2e^{-am}\int_{-\infty}^{\infty} e^{-u^2}\,du$$
Since
$$\int_{-\infty}^{\infty} e^{-u^2}\,du=\sqrt{\pi}$$
hence, we have the linear differential equation,
$$I'(m)-3aI(m)=-2e^{-am}\sqrt{\pi}$$
The integrating factor is $e^{-3am}$, hence,
$$I(m)\cdot e^{-3am}=\frac{\sqrt{\pi}e^{-4am}}{2a}+C$$
Since $I(0)=\frac{\sqrt{\pi}}{2a}$, we have $C=0$, hence
$$I(m)=\frac{\sqrt{\pi}}{2a}e^{-am}$$

--------------------------
Problem 3.
Rewrite the integral as
$$2\int_0^{\infty}te^{-a^2t^2}\int_0^{\infty} e^{-x^2t^2}\cos(mx)\,dx\,dt$$
From Problem 1, we can write:
$$2\int_0^{\infty}te^{-a^2t^2}\cdot\frac{\sqrt{\pi}}{2t}e^{-m^2/(4t^2)}\,dt=\sqrt{\pi}\int_0^{\infty}e^{-a^2t^2-m^2/(4t^2)}\,dt$$
From the result of problem 2, we have
$$\sqrt{\pi}\cdot \frac{\sqrt{\pi}}{2a}e^{-am}=\frac{\pi}{2a}e^{-am}$$
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K