MHB Evaluating an Integral: Laplace Transform Method

AI Thread Summary
The discussion focuses on evaluating the integral ∫₀^∞ (cos(mx)/(a²+x²)) dx using the Laplace transform method instead of contour integration. The user breaks the problem into three parts, successfully completing the first two: showing that ∫₀^∞ e^(-t²x²) cos(mx) dx equals (√π/(2t)) e^(-m²/(4t²)), and that ∫₀^∞ e^(-(a²t² + m²/(4t²))) dt equals (√π/(2a)) e^(-am). The third part, which involves evaluating the original integral using the derived results, was initially challenging but is now considered trivial by the user. The thread illustrates a successful application of the Laplace transform in integral evaluation.
polygamma
Messages
227
Reaction score
0
The typical way to evaluate $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx$ is by contour integration.

In a recent thread I evaluated that integral using the Laplace transform.

http://mathhelpboards.com/analysis-50/advanced-integration-problem-9129.html#post42551My challenge question is to use the fact that $$ \frac{1}{a^{2}+x^{2}} = 2 \int_{0}^{\infty} t e^{-(a^{2}+x^{2}) t^{2}} \ dt $$ to show that

$$\int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx = \frac{\pi}{2a} e^{-am} .$$
 
Last edited:
Mathematics news on Phys.org
I'm going to break the problem into three parts.1) Show that $ \displaystyle \int_{0}^{\infty} e^{-t^{2} x^{2}} \cos (mx) \ dx = \frac{\sqrt{\pi}}{2t} e^{-m^{2}/(4t^{2})}$.2) Show that $ \displaystyle \int_{0}^{\infty} e^{-[a^{2}t^{2} + m^{2}/(4t^{2})]} \ dt = \frac{\sqrt{\pi}}{2a} e^{-am}$.3) Evaluate $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx$ using the fact that $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx= 2 \int_{0}^{\infty} \int_{0}^{\infty} \cos(mx) t e^{-(a^{2}+x^{2}) t^{2}} \ dt \ dx $.
 
Last edited:
Random Variable said:
I'm going to break the problem into three parts.1) Show that $ \displaystyle \int_{0}^{\infty} e^{-t^{2} x^{2}} \cos (mx) \ dx = \frac{\sqrt{\pi}}{2t} e^{-m^{2}/(4t^{2})}$.2) Show that $ \displaystyle \int_{0}^{\infty} e^{-[a^{2}t^{2} + m^{2}/(4t^{2})]} \ dt = \frac{\sqrt{\pi}}{2a} e^{-am}$.3) Evaluate $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx$ using the fact that $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx= 2 \int_{0}^{\infty} \int_{0}^{\infty} \cos(mx) t e^{-(a^{2}+x^{2}) t^{2}} \ dt \ dx $.

I have figured out the first two parts, still working on third. :)

Woops, third one is trivial now. :p
Problem 1.
Let
$$I(m)=\int_0^{\infty} e^{-t^2x^2}\cos(mx)\,\,dx$$
Differentiate wrt $m$,
$$I'(m)=-\int_0^{\infty} xe^{-t^2x^2}\sin(mx)\,\,dx$$
Integrate by parts and using the fact that $\int xe^{-t^2x^2}dx=-e^{-t^2x^2}/(2t^2)$, we get:
$$I'(m)=-\frac{mI(m)}{2t^2}$$
Solving the differential equation,
$$\ln I(m)=-\frac{m^2}{4t^2}+C$$
Since $I(0)=\frac{\sqrt{\pi}}{2t}$, we have $C=\ln(I(0))$, hence
$$\ln\left(\frac{I(m)}{I(0)}\right)=-\frac{m^2}{4t^2}$$
$$\Rightarrow I(m)=I(0)e^{-m^2/(4t^2)}=\frac{\sqrt{\pi}}{2t}e^{-m^2/(4t^2)}$$

-----------------------------
Problem 2.
Let
$$I(m)=\int_0^{\infty} e^{-(a^2t^2+m^2/(4t^2))}dt=e^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\,dt$$

Differentiate wrt m to get
$$I'(m)=-ae^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\,dt+2e^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\left(a-\frac{m}{t^2}\right)\,dt$$
I rewrite $a-m/t^2$ as $2a-a-m/t^2$ and split the integral as follows:
$$I'(m)=-aI(m)+4ae^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\,dt-2e^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\left(a+\frac{m}{t^2}\right)\,dt$$
$$I'(m)=3aI-2e^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\left(a+\frac{m}{t^2}\right)\,dt$$
Use the substitution $at-m/t=u$ in the integral.
$$\Rightarrow I'(m)=3aI(m)-2e^{-am}\int_{-\infty}^{\infty} e^{-u^2}\,du$$
Since
$$\int_{-\infty}^{\infty} e^{-u^2}\,du=\sqrt{\pi}$$
hence, we have the linear differential equation,
$$I'(m)-3aI(m)=-2e^{-am}\sqrt{\pi}$$
The integrating factor is $e^{-3am}$, hence,
$$I(m)\cdot e^{-3am}=\frac{\sqrt{\pi}e^{-4am}}{2a}+C$$
Since $I(0)=\frac{\sqrt{\pi}}{2a}$, we have $C=0$, hence
$$I(m)=\frac{\sqrt{\pi}}{2a}e^{-am}$$

--------------------------
Problem 3.
Rewrite the integral as
$$2\int_0^{\infty}te^{-a^2t^2}\int_0^{\infty} e^{-x^2t^2}\cos(mx)\,dx\,dt$$
From Problem 1, we can write:
$$2\int_0^{\infty}te^{-a^2t^2}\cdot\frac{\sqrt{\pi}}{2t}e^{-m^2/(4t^2)}\,dt=\sqrt{\pi}\int_0^{\infty}e^{-a^2t^2-m^2/(4t^2)}\,dt$$
From the result of problem 2, we have
$$\sqrt{\pi}\cdot \frac{\sqrt{\pi}}{2a}e^{-am}=\frac{\pi}{2a}e^{-am}$$
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top