Evaluating an Integral: Laplace Transform Method

Click For Summary
SUMMARY

The integral $$ \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx $$ can be evaluated using the Laplace transform method, specifically through the identity $$ \frac{1}{a^{2}+x^{2}} = 2 \int_{0}^{\infty} t e^{-(a^{2}+x^{2}) t^{2}} \ dt $$. The solution is derived in three parts: first, showing $$ \int_{0}^{\infty} e^{-t^{2} x^{2}} \cos (mx) \ dx = \frac{\sqrt{\pi}}{2t} e^{-m^{2}/(4t^{2})} $$; second, demonstrating $$ \int_{0}^{\infty} e^{-[a^{2}t^{2} + m^{2}/(4t^{2})]} \ dt = \frac{\sqrt{\pi}}{2a} e^{-am} $$; and finally, confirming that $$ \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx = \frac{\pi}{2a} e^{-am} $$.

PREREQUISITES
  • Understanding of Laplace transforms
  • Familiarity with contour integration techniques
  • Knowledge of integral calculus, specifically improper integrals
  • Experience with exponential functions and their properties
NEXT STEPS
  • Study the properties of Laplace transforms in detail
  • Learn advanced techniques in contour integration
  • Explore the application of the Fourier transform in similar integrals
  • Investigate the use of integral identities in complex analysis
USEFUL FOR

Mathematicians, physicists, and engineering students who are interested in advanced integration techniques and the application of Laplace transforms in evaluating integrals.

polygamma
Messages
227
Reaction score
0
The typical way to evaluate $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx$ is by contour integration.

In a recent thread I evaluated that integral using the Laplace transform.

http://mathhelpboards.com/analysis-50/advanced-integration-problem-9129.html#post42551My challenge question is to use the fact that $$ \frac{1}{a^{2}+x^{2}} = 2 \int_{0}^{\infty} t e^{-(a^{2}+x^{2}) t^{2}} \ dt $$ to show that

$$\int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx = \frac{\pi}{2a} e^{-am} .$$
 
Last edited:
Physics news on Phys.org
I'm going to break the problem into three parts.1) Show that $ \displaystyle \int_{0}^{\infty} e^{-t^{2} x^{2}} \cos (mx) \ dx = \frac{\sqrt{\pi}}{2t} e^{-m^{2}/(4t^{2})}$.2) Show that $ \displaystyle \int_{0}^{\infty} e^{-[a^{2}t^{2} + m^{2}/(4t^{2})]} \ dt = \frac{\sqrt{\pi}}{2a} e^{-am}$.3) Evaluate $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx$ using the fact that $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx= 2 \int_{0}^{\infty} \int_{0}^{\infty} \cos(mx) t e^{-(a^{2}+x^{2}) t^{2}} \ dt \ dx $.
 
Last edited:
Random Variable said:
I'm going to break the problem into three parts.1) Show that $ \displaystyle \int_{0}^{\infty} e^{-t^{2} x^{2}} \cos (mx) \ dx = \frac{\sqrt{\pi}}{2t} e^{-m^{2}/(4t^{2})}$.2) Show that $ \displaystyle \int_{0}^{\infty} e^{-[a^{2}t^{2} + m^{2}/(4t^{2})]} \ dt = \frac{\sqrt{\pi}}{2a} e^{-am}$.3) Evaluate $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx$ using the fact that $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx= 2 \int_{0}^{\infty} \int_{0}^{\infty} \cos(mx) t e^{-(a^{2}+x^{2}) t^{2}} \ dt \ dx $.

I have figured out the first two parts, still working on third. :)

Woops, third one is trivial now. :p
Problem 1.
Let
$$I(m)=\int_0^{\infty} e^{-t^2x^2}\cos(mx)\,\,dx$$
Differentiate wrt $m$,
$$I'(m)=-\int_0^{\infty} xe^{-t^2x^2}\sin(mx)\,\,dx$$
Integrate by parts and using the fact that $\int xe^{-t^2x^2}dx=-e^{-t^2x^2}/(2t^2)$, we get:
$$I'(m)=-\frac{mI(m)}{2t^2}$$
Solving the differential equation,
$$\ln I(m)=-\frac{m^2}{4t^2}+C$$
Since $I(0)=\frac{\sqrt{\pi}}{2t}$, we have $C=\ln(I(0))$, hence
$$\ln\left(\frac{I(m)}{I(0)}\right)=-\frac{m^2}{4t^2}$$
$$\Rightarrow I(m)=I(0)e^{-m^2/(4t^2)}=\frac{\sqrt{\pi}}{2t}e^{-m^2/(4t^2)}$$

-----------------------------
Problem 2.
Let
$$I(m)=\int_0^{\infty} e^{-(a^2t^2+m^2/(4t^2))}dt=e^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\,dt$$

Differentiate wrt m to get
$$I'(m)=-ae^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\,dt+2e^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\left(a-\frac{m}{t^2}\right)\,dt$$
I rewrite $a-m/t^2$ as $2a-a-m/t^2$ and split the integral as follows:
$$I'(m)=-aI(m)+4ae^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\,dt-2e^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\left(a+\frac{m}{t^2}\right)\,dt$$
$$I'(m)=3aI-2e^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\left(a+\frac{m}{t^2}\right)\,dt$$
Use the substitution $at-m/t=u$ in the integral.
$$\Rightarrow I'(m)=3aI(m)-2e^{-am}\int_{-\infty}^{\infty} e^{-u^2}\,du$$
Since
$$\int_{-\infty}^{\infty} e^{-u^2}\,du=\sqrt{\pi}$$
hence, we have the linear differential equation,
$$I'(m)-3aI(m)=-2e^{-am}\sqrt{\pi}$$
The integrating factor is $e^{-3am}$, hence,
$$I(m)\cdot e^{-3am}=\frac{\sqrt{\pi}e^{-4am}}{2a}+C$$
Since $I(0)=\frac{\sqrt{\pi}}{2a}$, we have $C=0$, hence
$$I(m)=\frac{\sqrt{\pi}}{2a}e^{-am}$$

--------------------------
Problem 3.
Rewrite the integral as
$$2\int_0^{\infty}te^{-a^2t^2}\int_0^{\infty} e^{-x^2t^2}\cos(mx)\,dx\,dt$$
From Problem 1, we can write:
$$2\int_0^{\infty}te^{-a^2t^2}\cdot\frac{\sqrt{\pi}}{2t}e^{-m^2/(4t^2)}\,dt=\sqrt{\pi}\int_0^{\infty}e^{-a^2t^2-m^2/(4t^2)}\,dt$$
From the result of problem 2, we have
$$\sqrt{\pi}\cdot \frac{\sqrt{\pi}}{2a}e^{-am}=\frac{\pi}{2a}e^{-am}$$
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K