MHB Evaluating an Integral: Laplace Transform Method

polygamma
Messages
227
Reaction score
0
The typical way to evaluate $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx$ is by contour integration.

In a recent thread I evaluated that integral using the Laplace transform.

http://mathhelpboards.com/analysis-50/advanced-integration-problem-9129.html#post42551My challenge question is to use the fact that $$ \frac{1}{a^{2}+x^{2}} = 2 \int_{0}^{\infty} t e^{-(a^{2}+x^{2}) t^{2}} \ dt $$ to show that

$$\int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx = \frac{\pi}{2a} e^{-am} .$$
 
Last edited:
Mathematics news on Phys.org
I'm going to break the problem into three parts.1) Show that $ \displaystyle \int_{0}^{\infty} e^{-t^{2} x^{2}} \cos (mx) \ dx = \frac{\sqrt{\pi}}{2t} e^{-m^{2}/(4t^{2})}$.2) Show that $ \displaystyle \int_{0}^{\infty} e^{-[a^{2}t^{2} + m^{2}/(4t^{2})]} \ dt = \frac{\sqrt{\pi}}{2a} e^{-am}$.3) Evaluate $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx$ using the fact that $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx= 2 \int_{0}^{\infty} \int_{0}^{\infty} \cos(mx) t e^{-(a^{2}+x^{2}) t^{2}} \ dt \ dx $.
 
Last edited:
Random Variable said:
I'm going to break the problem into three parts.1) Show that $ \displaystyle \int_{0}^{\infty} e^{-t^{2} x^{2}} \cos (mx) \ dx = \frac{\sqrt{\pi}}{2t} e^{-m^{2}/(4t^{2})}$.2) Show that $ \displaystyle \int_{0}^{\infty} e^{-[a^{2}t^{2} + m^{2}/(4t^{2})]} \ dt = \frac{\sqrt{\pi}}{2a} e^{-am}$.3) Evaluate $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx$ using the fact that $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx= 2 \int_{0}^{\infty} \int_{0}^{\infty} \cos(mx) t e^{-(a^{2}+x^{2}) t^{2}} \ dt \ dx $.

I have figured out the first two parts, still working on third. :)

Woops, third one is trivial now. :p
Problem 1.
Let
$$I(m)=\int_0^{\infty} e^{-t^2x^2}\cos(mx)\,\,dx$$
Differentiate wrt $m$,
$$I'(m)=-\int_0^{\infty} xe^{-t^2x^2}\sin(mx)\,\,dx$$
Integrate by parts and using the fact that $\int xe^{-t^2x^2}dx=-e^{-t^2x^2}/(2t^2)$, we get:
$$I'(m)=-\frac{mI(m)}{2t^2}$$
Solving the differential equation,
$$\ln I(m)=-\frac{m^2}{4t^2}+C$$
Since $I(0)=\frac{\sqrt{\pi}}{2t}$, we have $C=\ln(I(0))$, hence
$$\ln\left(\frac{I(m)}{I(0)}\right)=-\frac{m^2}{4t^2}$$
$$\Rightarrow I(m)=I(0)e^{-m^2/(4t^2)}=\frac{\sqrt{\pi}}{2t}e^{-m^2/(4t^2)}$$

-----------------------------
Problem 2.
Let
$$I(m)=\int_0^{\infty} e^{-(a^2t^2+m^2/(4t^2))}dt=e^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\,dt$$

Differentiate wrt m to get
$$I'(m)=-ae^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\,dt+2e^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\left(a-\frac{m}{t^2}\right)\,dt$$
I rewrite $a-m/t^2$ as $2a-a-m/t^2$ and split the integral as follows:
$$I'(m)=-aI(m)+4ae^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\,dt-2e^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\left(a+\frac{m}{t^2}\right)\,dt$$
$$I'(m)=3aI-2e^{-am}\int_0^{\infty} e^{-(at-m/t)^2}\left(a+\frac{m}{t^2}\right)\,dt$$
Use the substitution $at-m/t=u$ in the integral.
$$\Rightarrow I'(m)=3aI(m)-2e^{-am}\int_{-\infty}^{\infty} e^{-u^2}\,du$$
Since
$$\int_{-\infty}^{\infty} e^{-u^2}\,du=\sqrt{\pi}$$
hence, we have the linear differential equation,
$$I'(m)-3aI(m)=-2e^{-am}\sqrt{\pi}$$
The integrating factor is $e^{-3am}$, hence,
$$I(m)\cdot e^{-3am}=\frac{\sqrt{\pi}e^{-4am}}{2a}+C$$
Since $I(0)=\frac{\sqrt{\pi}}{2a}$, we have $C=0$, hence
$$I(m)=\frac{\sqrt{\pi}}{2a}e^{-am}$$

--------------------------
Problem 3.
Rewrite the integral as
$$2\int_0^{\infty}te^{-a^2t^2}\int_0^{\infty} e^{-x^2t^2}\cos(mx)\,dx\,dt$$
From Problem 1, we can write:
$$2\int_0^{\infty}te^{-a^2t^2}\cdot\frac{\sqrt{\pi}}{2t}e^{-m^2/(4t^2)}\,dt=\sqrt{\pi}\int_0^{\infty}e^{-a^2t^2-m^2/(4t^2)}\,dt$$
From the result of problem 2, we have
$$\sqrt{\pi}\cdot \frac{\sqrt{\pi}}{2a}e^{-am}=\frac{\pi}{2a}e^{-am}$$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top