MHB Evaluating Complex Equation without a Calculator

AI Thread Summary
The discussion centers on evaluating a complex mathematical expression without a calculator, specifically a fraction involving square roots. Participants express their approaches to solving the equation and share insights on whether calculators can be used for intermediate steps. There is a focus on collaborative problem-solving, with members thanking each other for their contributions and insights. The conversation highlights the importance of understanding the underlying mathematical principles rather than relying solely on calculators. Overall, the thread emphasizes the value of manual calculation skills in tackling complex equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Without the help of calculator, evaluate $$\frac{(-\sqrt{6}+\sqrt{7}+\sqrt{8})^4}{4(\sqrt{7}-\sqrt{6})(\sqrt{8}-\sqrt{6})}+\frac{(\sqrt{6}-\sqrt{7}+\sqrt{8})^4}{4(\sqrt{6}-\sqrt{7})(\sqrt{8}-\sqrt{7})}+\frac{(\sqrt{6}+\sqrt{7}-\sqrt{8})^4}{4(\sqrt{6}-\sqrt{8})(\sqrt{7}-\sqrt{8})}$$.
 
Mathematics news on Phys.org
Can I use a calculator for just the in between steps? (Kiss)

-Dan
 
topsquark said:
(Kiss)

-Dan
Thanks, I'm flattered, but no, thanks.:p

Report for MHB in the beginning of 2016 (Week #4):

When it comes to entertaining and being funny, Dan really takes the cake. Haha!
 
topsquark said:
Can I use a calculator for just the in between steps? (Kiss)

-Dan

Since anemone declined the KISS...here you go:

giphy.gif
 
let
$x= (-\sqrt{6}+\sqrt{7}+\sqrt{8})$
$y= (\sqrt{6}-\sqrt{7}+\sqrt{8})$
$z=(\sqrt{6}+\sqrt{7}-\sqrt{8})$
so we get
$x-y= - 2(\sqrt{6} - \sqrt{7}) $ , $x-z= - 2(\sqrt{6} - \sqrt{8})$,$y-z = 2(\sqrt{8} - \sqrt{7})$
and $x + y= 2\sqrt{8} $ , $x + z= 2\sqrt{7}$,$y+ z = 2\sqrt{6}$
above sum reduces to
$\dfrac{x^4}{(x-y)(x-z)}+\dfrac{y^4}{(y-z)(y-x)}+\dfrac{z^4}{(z-x)(z-y)}$
= - ($\dfrac{x^4}{(x-y)(z-x)}+\dfrac{y^4}{(y-z)(x-y)}+\dfrac{z^4}{(z-x)(y-z)})$
= - $(\dfrac{x^4(y-z) + y^4(z-x) + z^4(x-y)}{(x-y)(y-z)(z-x)})$
now
$x^4(y-z) + y^4(z-x) + z^4(x-y)$
= $x^4(y-z) + yz(y^3-z^3) - x (y^4-z^4)$
= $x^4(y-z) + yz(y-z)(y^2+yz+z^2) - x(y-z)(y^3 + y^2z + yz^2 + z^3)$
= $(y-z)(x^4 + yz(y^2 +yz+z^2) - xy(y^2 + yz + z^2) - xz^3)$
= $(y-z)(x^4 + (y^2+yz+z^2)(yz-xy) - xz^3)$
= $(y-z)(x(x^3-z^3) + y(z-x)(y^2 + yz + z^2)$
=$(y-z)(z-x)(y(y^2 + yz + z^2) - x(x^2 + zx + z^2)$
= $(y-z)(z-x)(y^3 + y (yz+ z^2) - x^3 - x(zx + z^2)$
= $(y-z)(z-x)(y^3-x^3 + (y^2z + yz^2 - zx^2 - z^2 x)$
= $(y-z)(z-x)((y-x) (x^2 + xy + y^2) + (z(y^2 - x^2) +z^2(y-x))$
= $(y-z)(z-x)((y-x)(x^2 + xy + y^2 + z(y+x) + z^2)$
= $(-(x-y)(y-z)(z-x)(x^2 + y^2 + z^2 + xy+yz+zx)$
so the given expression
= $x^2 + y^2 +z^2 + xy + yz+ xz$
= $\frac{1}{2}((x+y)^2 + (y+z)^2 + (x+z)^2) = \frac{1}{2}(4 * (8+ 6 + 7)) = 42$
 
kaliprasad said:
let
$x= (-\sqrt{6}+\sqrt{7}+\sqrt{8})$
$y= (\sqrt{6}-\sqrt{7}+\sqrt{8})$
$z=(\sqrt{6}+\sqrt{7}-\sqrt{8})$
so we get
$x-y= - 2(\sqrt{6} - \sqrt{7}) $ , $x-z= - 2(\sqrt{6} - \sqrt{8})$,$y-z = 2(\sqrt{8} - \sqrt{7})$
and $x + y= 2\sqrt{8} $ , $x + z= 2\sqrt{7}$,$y+ z = 2\sqrt{6}$
above sum reduces to
$\dfrac{x^4}{(x-y)(x-z)}+\dfrac{y^4}{(y-z)(y-x)}+\dfrac{z^4}{(z-x)(z-y)}$
= - ($\dfrac{x^4}{(x-y)(z-x)}+\dfrac{y^4}{(y-z)(x-y)}+\dfrac{z^4}{(z-x)(y-z)})$
= - $(\dfrac{x^4(y-z) + y^4(z-x) + z^4(x-y)}{(x-y)(y-z)(z-x)})$
now
$x^4(y-z) + y^4(z-x) + z^4(x-y)$
= $x^4(y-z) + yz(y^3-z^3) - x (y^4-z^4)$
= $x^4(y-z) + yz(y-z)(y^2+yz+z^2) - x(y-z)(y^3 + y^2z + yz^2 + z^3)$
= $(y-z)(x^4 + yz(y^2 +yz+z^2) - xy(y^2 + yz + z^2) - xz^3)$
= $(y-z)(x^4 + (y^2+yz+z^2)(yz-xy) - xz^3)$
= $(y-z)(x(x^3-z^3) + y(z-x)(y^2 + yz + z^2)$
=$(y-z)(z-x)(y(y^2 + yz + z^2) - x(x^2 + zx + z^2)$
= $(y-z)(z-x)(y^3 + y (yz+ z^2) - x^3 - x(zx + z^2)$
= $(y-z)(z-x)(y^3-x^3 + (y^2z + yz^2 - zx^2 - z^2 x)$
= $(y-z)(z-x)((y-x) (x^2 + xy + y^2) + (z(y^2 - x^2) +z^2(y-x))$
= $(y-z)(z-x)((y-x)(x^2 + xy + y^2 + z(y+x) + z^2)$
= $(-(x-y)(y-z)(z-x)(x^2 + y^2 + z^2 + xy+yz+zx)$
so the given expression
= $x^2 + y^2 +z^2 + xy + yz+ xz$
= $\frac{1}{2}((x+y)^2 + (y+z)^2 + (x+z)^2) = \frac{1}{2}(4 * (8+ 6 + 7)) = 42$

Aww...that was exactly how I approached the problem as well! :cool:Thanks kaliprasad for participating!
 
kaliprasad said:
let
$x= (-\sqrt{6}+\sqrt{7}+\sqrt{8})$
$y= (\sqrt{6}-\sqrt{7}+\sqrt{8})$
$z=(\sqrt{6}+\sqrt{7}-\sqrt{8})$
so we get
$x-y= - 2(\sqrt{6} - \sqrt{7}) $ , $x-z= - 2(\sqrt{6} - \sqrt{8})$,$y-z = 2(\sqrt{8} - \sqrt{7})$
and $x + y= 2\sqrt{8} $ , $x + z= 2\sqrt{7}$,$y+ z = 2\sqrt{6}$
above sum reduces to
$\dfrac{x^4}{(x-y)(x-z)}+\dfrac{y^4}{(y-z)(y-x)}+\dfrac{z^4}{(z-x)(z-y)}$
= - ($\dfrac{x^4}{(x-y)(z-x)}+\dfrac{y^4}{(y-z)(x-y)}+\dfrac{z^4}{(z-x)(y-z)})$
= - $(\dfrac{x^4(y-z) + y^4(z-x) + z^4(x-y)}{(x-y)(y-z)(z-x)})$
now
$x^4(y-z) + y^4(z-x) + z^4(x-y)$
= $x^4(y-z) + yz(y^3-z^3) - x (y^4-z^4)$
= $x^4(y-z) + yz(y-z)(y^2+yz+z^2) - x(y-z)(y^3 + y^2z + yz^2 + z^3)$
= $(y-z)(x^4 + yz(y^2 +yz+z^2) - xy(y^2 + yz + z^2) - xz^3)$
= $(y-z)(x^4 + (y^2+yz+z^2)(yz-xy) - xz^3)$
= $(y-z)(x(x^3-z^3) + y(z-x)(y^2 + yz + z^2)$
=$(y-z)(z-x)(y(y^2 + yz + z^2) - x(x^2 + zx + z^2)$
= $(y-z)(z-x)(y^3 + y (yz+ z^2) - x^3 - x(zx + z^2)$
= $(y-z)(z-x)(y^3-x^3 + (y^2z + yz^2 - zx^2 - z^2 x)$
= $(y-z)(z-x)((y-x) (x^2 + xy + y^2) + (z(y^2 - x^2) +z^2(y-x))$
= $(y-z)(z-x)((y-x)(x^2 + xy + y^2 + z(y+x) + z^2)$
= $(-(x-y)(y-z)(z-x)(x^2 + y^2 + z^2 + xy+yz+zx)$
so the given expression
= $x^2 + y^2 +z^2 + xy + yz+ xz$
= $\frac{1}{2}((x+y)^2 + (y+z)^2 + (x+z)^2) = \frac{1}{2}(4 * (8+ 6 + 7)) = 42$
Wow. For both figuring this out and for typing the whole thing! (Bow)

-Dan
 
Back
Top