Evaluating Complex Equation without a Calculator

Click For Summary

Discussion Overview

The discussion revolves around evaluating a complex mathematical expression without the use of a calculator. Participants explore various approaches to simplify or solve the equation, which involves square roots and polynomial expressions.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant presents a complex equation for evaluation, seeking methods to solve it without a calculator.
  • Another participant humorously inquires if using a calculator for intermediate steps is permissible, indicating a light-hearted tone in the discussion.
  • Responses include expressions of appreciation for the efforts made in tackling the problem and engaging with the presented equation.

Areas of Agreement / Disagreement

There appears to be no consensus on the use of calculators, as some participants express a desire for flexibility while others maintain a strict no-calculator approach. The discussion remains informal and exploratory without a definitive resolution on the evaluation method.

Contextual Notes

The discussion lacks detailed mathematical steps or assumptions that might clarify the evaluation process further. Participants do not delve into specific methodologies or solutions.

Who May Find This Useful

Individuals interested in mathematical problem-solving, particularly those who enjoy tackling complex equations without computational aids, may find this discussion engaging.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Without the help of calculator, evaluate $$\frac{(-\sqrt{6}+\sqrt{7}+\sqrt{8})^4}{4(\sqrt{7}-\sqrt{6})(\sqrt{8}-\sqrt{6})}+\frac{(\sqrt{6}-\sqrt{7}+\sqrt{8})^4}{4(\sqrt{6}-\sqrt{7})(\sqrt{8}-\sqrt{7})}+\frac{(\sqrt{6}+\sqrt{7}-\sqrt{8})^4}{4(\sqrt{6}-\sqrt{8})(\sqrt{7}-\sqrt{8})}$$.
 
Mathematics news on Phys.org
Can I use a calculator for just the in between steps? (Kiss)

-Dan
 
topsquark said:
(Kiss)

-Dan
Thanks, I'm flattered, but no, thanks.:p

Report for MHB in the beginning of 2016 (Week #4):

When it comes to entertaining and being funny, Dan really takes the cake. Haha!
 
topsquark said:
Can I use a calculator for just the in between steps? (Kiss)

-Dan

Since anemone declined the KISS...here you go:

giphy.gif
 
let
$x= (-\sqrt{6}+\sqrt{7}+\sqrt{8})$
$y= (\sqrt{6}-\sqrt{7}+\sqrt{8})$
$z=(\sqrt{6}+\sqrt{7}-\sqrt{8})$
so we get
$x-y= - 2(\sqrt{6} - \sqrt{7}) $ , $x-z= - 2(\sqrt{6} - \sqrt{8})$,$y-z = 2(\sqrt{8} - \sqrt{7})$
and $x + y= 2\sqrt{8} $ , $x + z= 2\sqrt{7}$,$y+ z = 2\sqrt{6}$
above sum reduces to
$\dfrac{x^4}{(x-y)(x-z)}+\dfrac{y^4}{(y-z)(y-x)}+\dfrac{z^4}{(z-x)(z-y)}$
= - ($\dfrac{x^4}{(x-y)(z-x)}+\dfrac{y^4}{(y-z)(x-y)}+\dfrac{z^4}{(z-x)(y-z)})$
= - $(\dfrac{x^4(y-z) + y^4(z-x) + z^4(x-y)}{(x-y)(y-z)(z-x)})$
now
$x^4(y-z) + y^4(z-x) + z^4(x-y)$
= $x^4(y-z) + yz(y^3-z^3) - x (y^4-z^4)$
= $x^4(y-z) + yz(y-z)(y^2+yz+z^2) - x(y-z)(y^3 + y^2z + yz^2 + z^3)$
= $(y-z)(x^4 + yz(y^2 +yz+z^2) - xy(y^2 + yz + z^2) - xz^3)$
= $(y-z)(x^4 + (y^2+yz+z^2)(yz-xy) - xz^3)$
= $(y-z)(x(x^3-z^3) + y(z-x)(y^2 + yz + z^2)$
=$(y-z)(z-x)(y(y^2 + yz + z^2) - x(x^2 + zx + z^2)$
= $(y-z)(z-x)(y^3 + y (yz+ z^2) - x^3 - x(zx + z^2)$
= $(y-z)(z-x)(y^3-x^3 + (y^2z + yz^2 - zx^2 - z^2 x)$
= $(y-z)(z-x)((y-x) (x^2 + xy + y^2) + (z(y^2 - x^2) +z^2(y-x))$
= $(y-z)(z-x)((y-x)(x^2 + xy + y^2 + z(y+x) + z^2)$
= $(-(x-y)(y-z)(z-x)(x^2 + y^2 + z^2 + xy+yz+zx)$
so the given expression
= $x^2 + y^2 +z^2 + xy + yz+ xz$
= $\frac{1}{2}((x+y)^2 + (y+z)^2 + (x+z)^2) = \frac{1}{2}(4 * (8+ 6 + 7)) = 42$
 
kaliprasad said:
let
$x= (-\sqrt{6}+\sqrt{7}+\sqrt{8})$
$y= (\sqrt{6}-\sqrt{7}+\sqrt{8})$
$z=(\sqrt{6}+\sqrt{7}-\sqrt{8})$
so we get
$x-y= - 2(\sqrt{6} - \sqrt{7}) $ , $x-z= - 2(\sqrt{6} - \sqrt{8})$,$y-z = 2(\sqrt{8} - \sqrt{7})$
and $x + y= 2\sqrt{8} $ , $x + z= 2\sqrt{7}$,$y+ z = 2\sqrt{6}$
above sum reduces to
$\dfrac{x^4}{(x-y)(x-z)}+\dfrac{y^4}{(y-z)(y-x)}+\dfrac{z^4}{(z-x)(z-y)}$
= - ($\dfrac{x^4}{(x-y)(z-x)}+\dfrac{y^4}{(y-z)(x-y)}+\dfrac{z^4}{(z-x)(y-z)})$
= - $(\dfrac{x^4(y-z) + y^4(z-x) + z^4(x-y)}{(x-y)(y-z)(z-x)})$
now
$x^4(y-z) + y^4(z-x) + z^4(x-y)$
= $x^4(y-z) + yz(y^3-z^3) - x (y^4-z^4)$
= $x^4(y-z) + yz(y-z)(y^2+yz+z^2) - x(y-z)(y^3 + y^2z + yz^2 + z^3)$
= $(y-z)(x^4 + yz(y^2 +yz+z^2) - xy(y^2 + yz + z^2) - xz^3)$
= $(y-z)(x^4 + (y^2+yz+z^2)(yz-xy) - xz^3)$
= $(y-z)(x(x^3-z^3) + y(z-x)(y^2 + yz + z^2)$
=$(y-z)(z-x)(y(y^2 + yz + z^2) - x(x^2 + zx + z^2)$
= $(y-z)(z-x)(y^3 + y (yz+ z^2) - x^3 - x(zx + z^2)$
= $(y-z)(z-x)(y^3-x^3 + (y^2z + yz^2 - zx^2 - z^2 x)$
= $(y-z)(z-x)((y-x) (x^2 + xy + y^2) + (z(y^2 - x^2) +z^2(y-x))$
= $(y-z)(z-x)((y-x)(x^2 + xy + y^2 + z(y+x) + z^2)$
= $(-(x-y)(y-z)(z-x)(x^2 + y^2 + z^2 + xy+yz+zx)$
so the given expression
= $x^2 + y^2 +z^2 + xy + yz+ xz$
= $\frac{1}{2}((x+y)^2 + (y+z)^2 + (x+z)^2) = \frac{1}{2}(4 * (8+ 6 + 7)) = 42$

Aww...that was exactly how I approached the problem as well! :cool:Thanks kaliprasad for participating!
 
kaliprasad said:
let
$x= (-\sqrt{6}+\sqrt{7}+\sqrt{8})$
$y= (\sqrt{6}-\sqrt{7}+\sqrt{8})$
$z=(\sqrt{6}+\sqrt{7}-\sqrt{8})$
so we get
$x-y= - 2(\sqrt{6} - \sqrt{7}) $ , $x-z= - 2(\sqrt{6} - \sqrt{8})$,$y-z = 2(\sqrt{8} - \sqrt{7})$
and $x + y= 2\sqrt{8} $ , $x + z= 2\sqrt{7}$,$y+ z = 2\sqrt{6}$
above sum reduces to
$\dfrac{x^4}{(x-y)(x-z)}+\dfrac{y^4}{(y-z)(y-x)}+\dfrac{z^4}{(z-x)(z-y)}$
= - ($\dfrac{x^4}{(x-y)(z-x)}+\dfrac{y^4}{(y-z)(x-y)}+\dfrac{z^4}{(z-x)(y-z)})$
= - $(\dfrac{x^4(y-z) + y^4(z-x) + z^4(x-y)}{(x-y)(y-z)(z-x)})$
now
$x^4(y-z) + y^4(z-x) + z^4(x-y)$
= $x^4(y-z) + yz(y^3-z^3) - x (y^4-z^4)$
= $x^4(y-z) + yz(y-z)(y^2+yz+z^2) - x(y-z)(y^3 + y^2z + yz^2 + z^3)$
= $(y-z)(x^4 + yz(y^2 +yz+z^2) - xy(y^2 + yz + z^2) - xz^3)$
= $(y-z)(x^4 + (y^2+yz+z^2)(yz-xy) - xz^3)$
= $(y-z)(x(x^3-z^3) + y(z-x)(y^2 + yz + z^2)$
=$(y-z)(z-x)(y(y^2 + yz + z^2) - x(x^2 + zx + z^2)$
= $(y-z)(z-x)(y^3 + y (yz+ z^2) - x^3 - x(zx + z^2)$
= $(y-z)(z-x)(y^3-x^3 + (y^2z + yz^2 - zx^2 - z^2 x)$
= $(y-z)(z-x)((y-x) (x^2 + xy + y^2) + (z(y^2 - x^2) +z^2(y-x))$
= $(y-z)(z-x)((y-x)(x^2 + xy + y^2 + z(y+x) + z^2)$
= $(-(x-y)(y-z)(z-x)(x^2 + y^2 + z^2 + xy+yz+zx)$
so the given expression
= $x^2 + y^2 +z^2 + xy + yz+ xz$
= $\frac{1}{2}((x+y)^2 + (y+z)^2 + (x+z)^2) = \frac{1}{2}(4 * (8+ 6 + 7)) = 42$
Wow. For both figuring this out and for typing the whole thing! (Bow)

-Dan
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
4K
Replies
2
Views
3K
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 31 ·
2
Replies
31
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K