Evaluating $\displaystyle \sum_{k=1}^{49} \dfrac{1}{\sqrt{ k+\sqrt{k^2-1}}}$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The evaluation of the sum $\displaystyle \sum_{k=1}^{49} \dfrac{1}{\sqrt{ k+\sqrt{k^2-1}}}$ simplifies to $\frac{1}{\sqrt{2}}\left(\sqrt{50}+\sqrt{49}-1\right)$, which results in the final value of $5 + 3\sqrt{2} \approx 9.246$. The transformation of the original expression involves recognizing the telescoping nature of the sum, allowing for a straightforward calculation. This method effectively utilizes properties of square roots and simplification techniques to arrive at the conclusion.

PREREQUISITES
  • Understanding of summation notation and series
  • Familiarity with square root properties and simplification
  • Knowledge of telescoping series
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study telescoping series in greater detail
  • Explore advanced techniques in summation and series evaluation
  • Learn about convergence and divergence of series
  • Investigate applications of square root simplifications in calculus
USEFUL FOR

Mathematicians, students studying calculus or algebra, and anyone interested in advanced summation techniques and series evaluation.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\displaystyle \sum_{k=1}^{49} \dfrac{1}{\sqrt{ k+\sqrt{k^2-1}}}$
 
Physics news on Phys.org
anemone said:
Evaluate $\displaystyle \sum_{k=1}^{49} \dfrac{1}{\sqrt{ k+\sqrt{k^2-1}}}$

$$\sum_{k=1}^{49} \frac{1}{\sqrt{ k+\sqrt{k^2-1}}}=\sum_{k=1}^{49} \sqrt{ k-\sqrt{k^2-1}}=\sum_{k=1}^{49} \sqrt{\frac{k+1}{2}+\frac{k-1}{2}-2\sqrt{\frac{k+1}{2}}\sqrt{\frac{k-1}{2}}}$$
$$=\sum_{k=1}^{49} \sqrt{\left(\sqrt{\frac{k+1}{2}}-\sqrt{\frac{k-1}{2}}\right)^2}=\frac{1}{\sqrt{2}}\sum_{k=1}^{49} \sqrt{k+1}-\sqrt{k-1}$$
The sum telescopes and we get:
$$\frac{1}{\sqrt{2}}\left(\sqrt{50}+\sqrt{49}-1\right) = 5+3\sqrt{2} \approx 9.246$$
 
Last edited:
pranav said:
[sp]
$$\sum_{k=1}^{49} \frac{1}{\sqrt{ k+\sqrt{k^2-1}}}=\sum_{k=1}^{49} \sqrt{ k-\sqrt{k^2-1}}=\sum_{k=1}^{49} \sqrt{\frac{k+1}{2}+\frac{k-1}{2}-2\sqrt{\frac{k+1}{2}}\sqrt{\frac{k-1}{2}}}$$
$$=\sum_{k=1}^{49} \sqrt{\left(\sqrt{\frac{k+1}{2}}-\sqrt{\frac{k-1}{2}}\right)^2}=\frac{1}{\sqrt{2}}\sum_{k=1}^{49} \sqrt{k+1}-\sqrt{k-1}$$
the sum telescopes and we get:
$$\frac{1}{\sqrt{2}}\left(\sqrt{50}+\sqrt{49}-1\right) = 5+3\sqrt{2} \approx 9.246$$
[/sp]

nice :) .
 
ZaidAlyafey said:
nice :) .

Thank you! :-)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
955
  • · Replies 7 ·
Replies
7
Views
407
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K