MHB Evaluating $\displaystyle \sum_{k=1}^{49} \dfrac{1}{\sqrt{ k+\sqrt{k^2-1}}}$

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The evaluation of the sum $\sum_{k=1}^{49} \dfrac{1}{\sqrt{k+\sqrt{k^2-1}}}$ simplifies to $\sum_{k=1}^{49} \sqrt{k-\sqrt{k^2-1}}$. This transformation leads to a telescoping series, resulting in the expression $\frac{1}{\sqrt{2}}(\sqrt{50} + \sqrt{49} - 1)$. The final result of the evaluation is $5 + 3\sqrt{2}$, which approximates to 9.246. The discussion highlights the effectiveness of using algebraic manipulation to simplify complex sums.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\displaystyle \sum_{k=1}^{49} \dfrac{1}{\sqrt{ k+\sqrt{k^2-1}}}$
 
Mathematics news on Phys.org
anemone said:
Evaluate $\displaystyle \sum_{k=1}^{49} \dfrac{1}{\sqrt{ k+\sqrt{k^2-1}}}$

$$\sum_{k=1}^{49} \frac{1}{\sqrt{ k+\sqrt{k^2-1}}}=\sum_{k=1}^{49} \sqrt{ k-\sqrt{k^2-1}}=\sum_{k=1}^{49} \sqrt{\frac{k+1}{2}+\frac{k-1}{2}-2\sqrt{\frac{k+1}{2}}\sqrt{\frac{k-1}{2}}}$$
$$=\sum_{k=1}^{49} \sqrt{\left(\sqrt{\frac{k+1}{2}}-\sqrt{\frac{k-1}{2}}\right)^2}=\frac{1}{\sqrt{2}}\sum_{k=1}^{49} \sqrt{k+1}-\sqrt{k-1}$$
The sum telescopes and we get:
$$\frac{1}{\sqrt{2}}\left(\sqrt{50}+\sqrt{49}-1\right) = 5+3\sqrt{2} \approx 9.246$$
 
Last edited:
pranav said:
[sp]
$$\sum_{k=1}^{49} \frac{1}{\sqrt{ k+\sqrt{k^2-1}}}=\sum_{k=1}^{49} \sqrt{ k-\sqrt{k^2-1}}=\sum_{k=1}^{49} \sqrt{\frac{k+1}{2}+\frac{k-1}{2}-2\sqrt{\frac{k+1}{2}}\sqrt{\frac{k-1}{2}}}$$
$$=\sum_{k=1}^{49} \sqrt{\left(\sqrt{\frac{k+1}{2}}-\sqrt{\frac{k-1}{2}}\right)^2}=\frac{1}{\sqrt{2}}\sum_{k=1}^{49} \sqrt{k+1}-\sqrt{k-1}$$
the sum telescopes and we get:
$$\frac{1}{\sqrt{2}}\left(\sqrt{50}+\sqrt{49}-1\right) = 5+3\sqrt{2} \approx 9.246$$
[/sp]

nice :) .
 
ZaidAlyafey said:
nice :) .

Thank you! :-)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
1K
Replies
1
Views
885
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K