MHB Evaluating $\displaystyle \sum_{k=1}^{49} \dfrac{1}{\sqrt{ k+\sqrt{k^2-1}}}$

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The evaluation of the sum $\sum_{k=1}^{49} \dfrac{1}{\sqrt{k+\sqrt{k^2-1}}}$ simplifies to $\sum_{k=1}^{49} \sqrt{k-\sqrt{k^2-1}}$. This transformation leads to a telescoping series, resulting in the expression $\frac{1}{\sqrt{2}}(\sqrt{50} + \sqrt{49} - 1)$. The final result of the evaluation is $5 + 3\sqrt{2}$, which approximates to 9.246. The discussion highlights the effectiveness of using algebraic manipulation to simplify complex sums.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\displaystyle \sum_{k=1}^{49} \dfrac{1}{\sqrt{ k+\sqrt{k^2-1}}}$
 
Mathematics news on Phys.org
anemone said:
Evaluate $\displaystyle \sum_{k=1}^{49} \dfrac{1}{\sqrt{ k+\sqrt{k^2-1}}}$

$$\sum_{k=1}^{49} \frac{1}{\sqrt{ k+\sqrt{k^2-1}}}=\sum_{k=1}^{49} \sqrt{ k-\sqrt{k^2-1}}=\sum_{k=1}^{49} \sqrt{\frac{k+1}{2}+\frac{k-1}{2}-2\sqrt{\frac{k+1}{2}}\sqrt{\frac{k-1}{2}}}$$
$$=\sum_{k=1}^{49} \sqrt{\left(\sqrt{\frac{k+1}{2}}-\sqrt{\frac{k-1}{2}}\right)^2}=\frac{1}{\sqrt{2}}\sum_{k=1}^{49} \sqrt{k+1}-\sqrt{k-1}$$
The sum telescopes and we get:
$$\frac{1}{\sqrt{2}}\left(\sqrt{50}+\sqrt{49}-1\right) = 5+3\sqrt{2} \approx 9.246$$
 
Last edited:
pranav said:
[sp]
$$\sum_{k=1}^{49} \frac{1}{\sqrt{ k+\sqrt{k^2-1}}}=\sum_{k=1}^{49} \sqrt{ k-\sqrt{k^2-1}}=\sum_{k=1}^{49} \sqrt{\frac{k+1}{2}+\frac{k-1}{2}-2\sqrt{\frac{k+1}{2}}\sqrt{\frac{k-1}{2}}}$$
$$=\sum_{k=1}^{49} \sqrt{\left(\sqrt{\frac{k+1}{2}}-\sqrt{\frac{k-1}{2}}\right)^2}=\frac{1}{\sqrt{2}}\sum_{k=1}^{49} \sqrt{k+1}-\sqrt{k-1}$$
the sum telescopes and we get:
$$\frac{1}{\sqrt{2}}\left(\sqrt{50}+\sqrt{49}-1\right) = 5+3\sqrt{2} \approx 9.246$$
[/sp]

nice :) .
 
ZaidAlyafey said:
nice :) .

Thank you! :-)
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
1K
Replies
1
Views
858
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K