Evaluating $\displaystyle \sum_{k=1}^{49} \dfrac{1}{\sqrt{ k+\sqrt{k^2-1}}}$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around evaluating the sum $\displaystyle \sum_{k=1}^{49} \dfrac{1}{\sqrt{ k+\sqrt{k^2-1}}}$. Participants explore different approaches and simplifications related to this mathematical expression.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant proposes a transformation of the original sum into an equivalent form involving $\sqrt{k-\sqrt{k^2-1}}$ and provides a detailed step-by-step simplification.
  • The same participant concludes that the sum telescopes, leading to an approximate numerical result of $5 + 3\sqrt{2} \approx 9.246$.
  • Other participants express appreciation for the solution without adding further mathematical insights or challenges.

Areas of Agreement / Disagreement

There is no disagreement noted in the discussion, but the lack of further exploration or challenge suggests a consensus on the proposed method and result.

Contextual Notes

The discussion does not address potential limitations or assumptions in the mathematical steps taken, nor does it explore alternative methods for evaluating the sum.

Who May Find This Useful

Readers interested in mathematical series, telescoping sums, or specific techniques for evaluating sums in calculus may find this discussion relevant.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\displaystyle \sum_{k=1}^{49} \dfrac{1}{\sqrt{ k+\sqrt{k^2-1}}}$
 
Physics news on Phys.org
anemone said:
Evaluate $\displaystyle \sum_{k=1}^{49} \dfrac{1}{\sqrt{ k+\sqrt{k^2-1}}}$

$$\sum_{k=1}^{49} \frac{1}{\sqrt{ k+\sqrt{k^2-1}}}=\sum_{k=1}^{49} \sqrt{ k-\sqrt{k^2-1}}=\sum_{k=1}^{49} \sqrt{\frac{k+1}{2}+\frac{k-1}{2}-2\sqrt{\frac{k+1}{2}}\sqrt{\frac{k-1}{2}}}$$
$$=\sum_{k=1}^{49} \sqrt{\left(\sqrt{\frac{k+1}{2}}-\sqrt{\frac{k-1}{2}}\right)^2}=\frac{1}{\sqrt{2}}\sum_{k=1}^{49} \sqrt{k+1}-\sqrt{k-1}$$
The sum telescopes and we get:
$$\frac{1}{\sqrt{2}}\left(\sqrt{50}+\sqrt{49}-1\right) = 5+3\sqrt{2} \approx 9.246$$
 
Last edited:
pranav said:
[sp]
$$\sum_{k=1}^{49} \frac{1}{\sqrt{ k+\sqrt{k^2-1}}}=\sum_{k=1}^{49} \sqrt{ k-\sqrt{k^2-1}}=\sum_{k=1}^{49} \sqrt{\frac{k+1}{2}+\frac{k-1}{2}-2\sqrt{\frac{k+1}{2}}\sqrt{\frac{k-1}{2}}}$$
$$=\sum_{k=1}^{49} \sqrt{\left(\sqrt{\frac{k+1}{2}}-\sqrt{\frac{k-1}{2}}\right)^2}=\frac{1}{\sqrt{2}}\sum_{k=1}^{49} \sqrt{k+1}-\sqrt{k-1}$$
the sum telescopes and we get:
$$\frac{1}{\sqrt{2}}\left(\sqrt{50}+\sqrt{49}-1\right) = 5+3\sqrt{2} \approx 9.246$$
[/sp]

nice :) .
 
ZaidAlyafey said:
nice :) .

Thank you! :-)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
984
  • · Replies 7 ·
Replies
7
Views
563
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K