MHB Evaluating Limit $$\frac{\ln2}{2}+\cdots+\frac{\ln n}{n}$$

  • Thread starter Thread starter Vali
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
The limit under evaluation is $$\lim_{n \to \infty}\dfrac{\dfrac{\ln2}{2}+\dfrac{\ln3}{3}+\cdots+\dfrac{\ln n}{n}}{\ln^2 n}$$. The application of Stoltz-Cesaro leads to a transformation of the limit, resulting in $$\lim_{n \to \infty}\dfrac{\dfrac{\ln (n+1)}{n+1}}{\ln^2 (n+1)-\ln^2 n}$$. There is confusion regarding the limit being zero; however, the correct limit is actually 1/2. The discussion highlights the importance of properly handling the limits of the numerator and denominator. The conclusion emphasizes that the initial analysis was correct, except for the misinterpretation of the limit behavior.
Vali
Messages
48
Reaction score
0
Hi,

$$\lim_{n \to \infty}\dfrac{\dfrac{\ln2}{2}+\dfrac{\ln3}{3}+\cdots+\dfrac{\ln n}{n}}{\ln^2 n}.$$
After I applied Stoltz-Cesaro I got $$\lim_{n \to \infty}\dfrac{\dfrac{\ln2}{2}+\dfrac{\ln3}{3}+\cdots+\dfrac{\ln n}{n}}{\ln^2 n}=\lim_{n \to \infty}\dfrac{\dfrac{\ln (n+1)}{n+1}}{\ln^2 (n+1)-\ln^2 n}$$
How to continue ? The limit shouldn't be 0 ? because$\lim_{n \to \infty}\frac{ln(n+1)}{n+1}=0$
It's not 0, it's $1/2$ and I don't know why.
 
Physics news on Phys.org
I did it, thanks!
 
Everything is right except the part where the denominator/numerator limits are taken separately (i.e. the very last part).
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K