MHB Evaluating Limit $$\frac{\ln2}{2}+\cdots+\frac{\ln n}{n}$$

  • Thread starter Thread starter Vali
  • Start date Start date
  • Tags Tags
    Limit
Vali
Messages
48
Reaction score
0
Hi,

$$\lim_{n \to \infty}\dfrac{\dfrac{\ln2}{2}+\dfrac{\ln3}{3}+\cdots+\dfrac{\ln n}{n}}{\ln^2 n}.$$
After I applied Stoltz-Cesaro I got $$\lim_{n \to \infty}\dfrac{\dfrac{\ln2}{2}+\dfrac{\ln3}{3}+\cdots+\dfrac{\ln n}{n}}{\ln^2 n}=\lim_{n \to \infty}\dfrac{\dfrac{\ln (n+1)}{n+1}}{\ln^2 (n+1)-\ln^2 n}$$
How to continue ? The limit shouldn't be 0 ? because$\lim_{n \to \infty}\frac{ln(n+1)}{n+1}=0$
It's not 0, it's $1/2$ and I don't know why.
 
Physics news on Phys.org
I did it, thanks!
 
Everything is right except the part where the denominator/numerator limits are taken separately (i.e. the very last part).
 

Similar threads

Replies
8
Views
1K
Replies
17
Views
5K
Replies
9
Views
2K
Replies
2
Views
2K
Replies
11
Views
2K
Replies
3
Views
3K
Back
Top