MHB Exact Sequences - Diagrams that 'commute' - Example

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Dummit and Foote Section 10.5 on Exact Sequences.

I am trying to understand Example 1 as given at the bottom of page 381 and continued at the top of page 382 - please see attachment for the diagram and explanantion of the example.

The example, as you can no doubt see, requires an understanding of the nature of the quotient module (\mathbb{Z} / m \mathbb{Z} ) / (n \mathbb{Z} / m \mathbb{Z} )

To make this quotient more tangible, in this example take m = 6, n = 3 so k = 2.

Then we are trying to understand the nature of the quotient module (\mathbb{Z} / 6 \mathbb{Z} ) / (3 \mathbb{Z} / 6 \mathbb{Z} )

Now consider the nature of (\mathbb{Z} / 6 \mathbb{Z} )

We have 0 + \mathbb{Z} / 6 \mathbb{Z} = { ... ... -18, -12, -6, 0 , 6, 12, 18, 24, ... ... }

and 1 + \mathbb{Z} / 6 \mathbb{Z} = {... ... -17, -11, -5, 1, 7, 13, 19, 25, ... }

and so on

But what is 3 \mathbb{Z} / 6 \mathbb{Z} ? and indeed, further, what is (\mathbb{Z} / 6 \mathbb{Z} ) / (3 \mathbb{Z} / 6 \mathbb{Z} ) ?

Can someone please help clarify this matter?

Peter
 
Physics news on Phys.org
Let's just consider Z-modules...that is, abelian groups. We can ask:

What does the group (Z/mZ)/(Z/nZ) look like?

Let's consider a more general question: for abelian groups G,H,K with K a subgroup of H, and H a subgroup of G, what does:

(G/K)/(H/K) look like?

the elements of G/K and H/K both look very similar: they are of the form g+K or h+K (additive cosets or translates of K). So a "typical" element of (G/K)/(H/K) is a coset:

(g+K) + (H/K).

Let's examine this in more detail when G = Z, H = 3Z, and K = 6Z.

The elements of Z/6Z are:

{...-6,0,6,12...} = 0+6Z = 6Z = [0]
{...-5,1,7,13...} = 1+6Z = [1]
{...-4,2,8,14...} = 2+6Z = [2]
{...-3,3,9,15...} = 3+6Z = [3]
{...-2,4,10,16...} = 4+6Z = [4]
{...-1,5,11,17...} = 5+6Z = [5]

this is a cyclic group of order 6.

What is H/K = 3Z/6Z? This consists of those cosets whose representatives are all multiples of 3. This is the subgroup of Z/6Z generated by [3], namely:

H/K = {[0],[3]}

in other words the natural projection from G/K to (G/K)/(H/K) sends:

[0]-->H/K
[1]-->[1] + H/K = {[1],[4]}
[2]-->[2] + H/K = {[2],[5]}
[3]-->H/K
[4]-->[1] + H/K (which equal [4] + H/K)
[5]-->[2] + H/K

Clearly, (G/K)/(H/K) has order 6/2 = 3, we have the isomorphism from Z/3Z given by:

[k] = k + 3Z <--> [k] + H/K

In fact, (G/K)/(H/K) is isomorphic to G/H, a fact known as the third (or sometimes second) isomorphism theorem for abelian groups (aka the "freshman theorem"...just "cancel the K's"), via the map:

(g+K)(H/K) <--> g+H

the only "tricky part" here is verifying this map is *well-defined*, that is:

if (g+K)(H/K) = (g'+K)(H/K), then g+H = g'+H. But see:

if (g+K)(H/K) = (g'+K)(H/K), this means that:

(g+K) - (g'+K) = (g - g') + K is in H/K, which means that g - g' is in H.
 
Deveno said:
Let's just consider Z-modules...that is, abelian groups. We can ask:

What does the group (Z/mZ)/(Z/nZ) look like?

Let's consider a more general question: for abelian groups G,H,K with K a subgroup of H, and H a subgroup of G, what does:

(G/K)/(H/K) look like?

the elements of G/K and H/K both look very similar: they are of the form g+K or h+K (additive cosets or translates of K). So a "typical" element of (G/K)/(H/K) is a coset:

(g+K) + (H/K).

Let's examine this in more detail when G = Z, H = 3Z, and K = 6Z.

The elements of Z/6Z are:

{...-6,0,6,12...} = 0+6Z = 6Z = [0]
{...-5,1,7,13...} = 1+6Z = [1]
{...-4,2,8,14...} = 2+6Z = [2]
{...-3,3,9,15...} = 3+6Z = [3]
{...-2,4,10,16...} = 4+6Z = [4]
{...-1,5,11,17...} = 5+6Z = [5]

this is a cyclic group of order 6.

What is H/K = 3Z/6Z? This consists of those cosets whose representatives are all multiples of 3. This is the subgroup of Z/6Z generated by [3], namely:

H/K = {[0],[3]}

in other words the natural projection from G/K to (G/K)/(H/K) sends:

[0]-->H/K
[1]-->[1] + H/K = {[1],[4]}
[2]-->[2] + H/K = {[2],[5]}
[3]-->H/K
[4]-->[1] + H/K (which equal [4] + H/K)
[5]-->[2] + H/K

Clearly, (G/K)/(H/K) has order 6/2 = 3, we have the isomorphism from Z/3Z given by:

[k] = k + 3Z <--> [k] + H/K

In fact, (G/K)/(H/K) is isomorphic to G/H, a fact known as the third (or sometimes second) isomorphism theorem for abelian groups (aka the "freshman theorem"...just "cancel the K's"), via the map:

(g+K)(H/K) <--> g+H

the only "tricky part" here is verifying this map is *well-defined*, that is:

if (g+K)(H/K) = (g'+K)(H/K), then g+H = g'+H. But see:

if (g+K)(H/K) = (g'+K)(H/K), this means that:

(g+K) - (g'+K) = (g - g') + K is in H/K, which means that g - g' is in H.
Thank you Deveno, that was a VERY helpful post ... ...
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top