MHB Exact Sequences - Diagrams that 'commute' - Example

Click For Summary
The discussion centers on understanding the quotient module (\mathbb{Z} / m \mathbb{Z}) / (n \mathbb{Z} / m \mathbb{Z}) using specific values of m and n. By setting m = 6 and n = 3, participants explore the structure of the groups involved, particularly focusing on the elements of \mathbb{Z}/6\mathbb{Z} and the subgroup 3\mathbb{Z}/6\mathbb{Z}. The conversation highlights that the quotient (G/K)/(H/K) is isomorphic to G/H, illustrating this with examples from abelian group theory. A key point is the verification of the well-defined nature of the mapping between these groups. The insights shared significantly clarify the nature of the quotient modules in the context of exact sequences.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Dummit and Foote Section 10.5 on Exact Sequences.

I am trying to understand Example 1 as given at the bottom of page 381 and continued at the top of page 382 - please see attachment for the diagram and explanantion of the example.

The example, as you can no doubt see, requires an understanding of the nature of the quotient module (\mathbb{Z} / m \mathbb{Z} ) / (n \mathbb{Z} / m \mathbb{Z} )

To make this quotient more tangible, in this example take m = 6, n = 3 so k = 2.

Then we are trying to understand the nature of the quotient module (\mathbb{Z} / 6 \mathbb{Z} ) / (3 \mathbb{Z} / 6 \mathbb{Z} )

Now consider the nature of (\mathbb{Z} / 6 \mathbb{Z} )

We have 0 + \mathbb{Z} / 6 \mathbb{Z} = { ... ... -18, -12, -6, 0 , 6, 12, 18, 24, ... ... }

and 1 + \mathbb{Z} / 6 \mathbb{Z} = {... ... -17, -11, -5, 1, 7, 13, 19, 25, ... }

and so on

But what is 3 \mathbb{Z} / 6 \mathbb{Z} ? and indeed, further, what is (\mathbb{Z} / 6 \mathbb{Z} ) / (3 \mathbb{Z} / 6 \mathbb{Z} ) ?

Can someone please help clarify this matter?

Peter
 
Physics news on Phys.org
Let's just consider Z-modules...that is, abelian groups. We can ask:

What does the group (Z/mZ)/(Z/nZ) look like?

Let's consider a more general question: for abelian groups G,H,K with K a subgroup of H, and H a subgroup of G, what does:

(G/K)/(H/K) look like?

the elements of G/K and H/K both look very similar: they are of the form g+K or h+K (additive cosets or translates of K). So a "typical" element of (G/K)/(H/K) is a coset:

(g+K) + (H/K).

Let's examine this in more detail when G = Z, H = 3Z, and K = 6Z.

The elements of Z/6Z are:

{...-6,0,6,12...} = 0+6Z = 6Z = [0]
{...-5,1,7,13...} = 1+6Z = [1]
{...-4,2,8,14...} = 2+6Z = [2]
{...-3,3,9,15...} = 3+6Z = [3]
{...-2,4,10,16...} = 4+6Z = [4]
{...-1,5,11,17...} = 5+6Z = [5]

this is a cyclic group of order 6.

What is H/K = 3Z/6Z? This consists of those cosets whose representatives are all multiples of 3. This is the subgroup of Z/6Z generated by [3], namely:

H/K = {[0],[3]}

in other words the natural projection from G/K to (G/K)/(H/K) sends:

[0]-->H/K
[1]-->[1] + H/K = {[1],[4]}
[2]-->[2] + H/K = {[2],[5]}
[3]-->H/K
[4]-->[1] + H/K (which equal [4] + H/K)
[5]-->[2] + H/K

Clearly, (G/K)/(H/K) has order 6/2 = 3, we have the isomorphism from Z/3Z given by:

[k] = k + 3Z <--> [k] + H/K

In fact, (G/K)/(H/K) is isomorphic to G/H, a fact known as the third (or sometimes second) isomorphism theorem for abelian groups (aka the "freshman theorem"...just "cancel the K's"), via the map:

(g+K)(H/K) <--> g+H

the only "tricky part" here is verifying this map is *well-defined*, that is:

if (g+K)(H/K) = (g'+K)(H/K), then g+H = g'+H. But see:

if (g+K)(H/K) = (g'+K)(H/K), this means that:

(g+K) - (g'+K) = (g - g') + K is in H/K, which means that g - g' is in H.
 
Deveno said:
Let's just consider Z-modules...that is, abelian groups. We can ask:

What does the group (Z/mZ)/(Z/nZ) look like?

Let's consider a more general question: for abelian groups G,H,K with K a subgroup of H, and H a subgroup of G, what does:

(G/K)/(H/K) look like?

the elements of G/K and H/K both look very similar: they are of the form g+K or h+K (additive cosets or translates of K). So a "typical" element of (G/K)/(H/K) is a coset:

(g+K) + (H/K).

Let's examine this in more detail when G = Z, H = 3Z, and K = 6Z.

The elements of Z/6Z are:

{...-6,0,6,12...} = 0+6Z = 6Z = [0]
{...-5,1,7,13...} = 1+6Z = [1]
{...-4,2,8,14...} = 2+6Z = [2]
{...-3,3,9,15...} = 3+6Z = [3]
{...-2,4,10,16...} = 4+6Z = [4]
{...-1,5,11,17...} = 5+6Z = [5]

this is a cyclic group of order 6.

What is H/K = 3Z/6Z? This consists of those cosets whose representatives are all multiples of 3. This is the subgroup of Z/6Z generated by [3], namely:

H/K = {[0],[3]}

in other words the natural projection from G/K to (G/K)/(H/K) sends:

[0]-->H/K
[1]-->[1] + H/K = {[1],[4]}
[2]-->[2] + H/K = {[2],[5]}
[3]-->H/K
[4]-->[1] + H/K (which equal [4] + H/K)
[5]-->[2] + H/K

Clearly, (G/K)/(H/K) has order 6/2 = 3, we have the isomorphism from Z/3Z given by:

[k] = k + 3Z <--> [k] + H/K

In fact, (G/K)/(H/K) is isomorphic to G/H, a fact known as the third (or sometimes second) isomorphism theorem for abelian groups (aka the "freshman theorem"...just "cancel the K's"), via the map:

(g+K)(H/K) <--> g+H

the only "tricky part" here is verifying this map is *well-defined*, that is:

if (g+K)(H/K) = (g'+K)(H/K), then g+H = g'+H. But see:

if (g+K)(H/K) = (g'+K)(H/K), this means that:

(g+K) - (g'+K) = (g - g') + K is in H/K, which means that g - g' is in H.
Thank you Deveno, that was a VERY helpful post ... ...
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
836
  • · Replies 3 ·
Replies
3
Views
3K
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K