MHB Example of Set for Relation Restriction to A

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Example Set
AI Thread Summary
The discussion focuses on the concept of restricting a relation R to a set A, defined mathematically as R|A = {<x,y>: x ∈ A and <x,y> ∈ R}. Examples illustrate this concept, such as the relation defined by xRy if y = x^2, where the restriction to the natural numbers results in a domain of natural numbers. Another example involves the relation mRn if m divides n, showing that the restriction to the set {2} yields pairs where n is even. Additionally, the relation mRn if n^2 = m is examined, with its restriction to the set of powers of 2 resulting in a specific domain of square numbers. These examples clarify the relationship between the domain of the original relation and its restriction.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Let $R$ be a relation and $A$ a set.
The restriction of $R$ to $A$ is the set:

$$R\restriction A=\{ <x,y>: x \in A \wedge <x,y> \in R\}=\{ <x,y>: x \in A \wedge xRy\}$$

For a relation $R$ and a set $A$, it stands that:

$$dom(R \restriction A)=dom(R) \cap A$$

Could you give me an example of such a set, so that I can see that the above relation stands? (Thinking)
 
Physics news on Phys.org
If $R$ is a function from $\Bbb R$ to $\Bbb R$ defined by $xRy\iff y=x^2$, then $R\restriction\Bbb N$ is the restriction of function $R$ to $\Bbb N$ in this sense. Here $\operatorname{dom} R=\Bbb R$ and $\operatorname{dom}(R\restriction\Bbb N)=\Bbb R\cap\Bbb N=\Bbb N$.

If $mRn\iff m\text{ divides }n$ where $m,n\in\Bbb N$, then $R\restriction\{2\}=\{\langle2,n\rangle\mid n\text{ is even}\}$. Here $\operatorname{dom} R=\Bbb N$ and $\operatorname{dom}(R\restriction\{2\})=\Bbb N\cap\{2\}=\{2\}$.

If $mRn\iff n^2=m$ where $m,n\in\Bbb N$, then $\operatorname{dom} R$ is the set $\Bbb S$ of all square numbers. Let $\Bbb P=\{2^n\mid n\in\Bbb N\}$. Then $R\restriction\Bbb P=\{\langle 2^{2n},2^n\rangle\mid n\in\Bbb N\}$ and $\operatorname{dom}(R\restriction\Bbb P)=\Bbb S\cap\Bbb P=\{2^{2n}\mid n\in\Bbb N\}$.
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...

Similar threads

Replies
1
Views
1K
Replies
4
Views
2K
Replies
5
Views
2K
Replies
3
Views
2K
Replies
9
Views
2K
Replies
22
Views
5K
Back
Top