MHB Example of Set for Relation Restriction to A

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Example Set
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Let $R$ be a relation and $A$ a set.
The restriction of $R$ to $A$ is the set:

$$R\restriction A=\{ <x,y>: x \in A \wedge <x,y> \in R\}=\{ <x,y>: x \in A \wedge xRy\}$$

For a relation $R$ and a set $A$, it stands that:

$$dom(R \restriction A)=dom(R) \cap A$$

Could you give me an example of such a set, so that I can see that the above relation stands? (Thinking)
 
Physics news on Phys.org
If $R$ is a function from $\Bbb R$ to $\Bbb R$ defined by $xRy\iff y=x^2$, then $R\restriction\Bbb N$ is the restriction of function $R$ to $\Bbb N$ in this sense. Here $\operatorname{dom} R=\Bbb R$ and $\operatorname{dom}(R\restriction\Bbb N)=\Bbb R\cap\Bbb N=\Bbb N$.

If $mRn\iff m\text{ divides }n$ where $m,n\in\Bbb N$, then $R\restriction\{2\}=\{\langle2,n\rangle\mid n\text{ is even}\}$. Here $\operatorname{dom} R=\Bbb N$ and $\operatorname{dom}(R\restriction\{2\})=\Bbb N\cap\{2\}=\{2\}$.

If $mRn\iff n^2=m$ where $m,n\in\Bbb N$, then $\operatorname{dom} R$ is the set $\Bbb S$ of all square numbers. Let $\Bbb P=\{2^n\mid n\in\Bbb N\}$. Then $R\restriction\Bbb P=\{\langle 2^{2n},2^n\rangle\mid n\in\Bbb N\}$ and $\operatorname{dom}(R\restriction\Bbb P)=\Bbb S\cap\Bbb P=\{2^{2n}\mid n\in\Bbb N\}$.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Replies
1
Views
1K
Replies
4
Views
2K
Replies
5
Views
2K
Replies
3
Views
2K
Replies
9
Views
2K
Replies
22
Views
5K
Back
Top