Expected number of sold books and profit

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Books
Click For Summary

Discussion Overview

The discussion revolves around the expected number of sold books and the associated profit for a bookstore selling a specific book. Participants explore the probability function for the number of sold copies, calculate expected values, and discuss the implications of unsold inventory. The scope includes theoretical reasoning and mathematical calculations related to probability and profit analysis.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants question whether the probability function $p_X(x)$ is valid by checking if it sums to 1 and whether it meets the criteria for a probability function.
  • There is uncertainty about the expected number of sold copies, with some suggesting that it can be calculated using the formula $E[X]=\sum_{i=1}^{15}x\cdot p_X(x)$.
  • Participants discuss the expected profit calculation, with some proposing that the expected profit for one book can be derived from the formula involving selling price and return price, while others challenge the assumption of equal probabilities for selling or not selling.
  • One participant calculates the expected number of sold copies and arrives at approximately 9.87, but expresses uncertainty about the correctness of this result.
  • There is a discussion about whether to include the case of selling 0 books in the profit calculation, with some arguing that the probability of selling 0 books is effectively 0.
  • Some participants clarify that the sum for expected profit should start from 1 sold book, as the probability of selling 0 books is not defined in the context of the given probability function.

Areas of Agreement / Disagreement

Participants express various viewpoints on the calculations and assumptions involved, leading to multiple competing interpretations of the expected profit and the validity of the probability function. The discussion remains unresolved regarding the exact calculations and assumptions about selling probabilities.

Contextual Notes

Participants note that the probability function is defined for $x \in \{1, \ldots, 15\}$, implying that selling 0 books is not a possible outcome in this context. This raises questions about how to handle calculations involving expected profit and the starting point for summation.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

A bookstore buys 15 copies of a book at a price of 20 euros each and offers them on sale for 30 euros each. The contract provides that the bookstore after a year can return the unsold copies of the book and receive 18 euros each.
Let the number of sold copies of this book in a year be determined by a random variable X with probability function $p_X(x)=\frac{x+2}{150}, \ x\in \{1,2, \ldots , 15\}$.
(a) Verify that $p_X$ is indeed a probability function.
(b) Determine the expected number of sold copies in a year. Write also the intermediate steps.
(c) Determine the bookstore's expected profit from the sale of this book if all unsold books are returned after one year. Write also the intermediate steps. I have done the following :
(a) Do we have to check that $p_X(\Omega)=1$ and $p_X\left (\cup A_i\right )=\sum p_X(A_i)$ ? :unsure:

(b) Is the expected number of sold copies equal to $E[X]=\sum_{i=1}^{15}x\cdot p_X(x)$ ? :unsure:

(c) The total expected profit is the sum of expected profits from each book, right? For one book the expected profit is $(30-20)\cdot 0.50+(18-20)\cdot 0.50=4$, or isn't the probability to sell or not to sell equal to $\frac{1}{2}$ ? Is then the total profit $15\cdot 4=60$ ? :unsure:
 
Physics news on Phys.org
mathmari said:
I have done the following :
(a) Do we have to check that $p_X(\Omega)=1$ and $p_X\left (\cup A_i\right )=\sum p_X(A_i)$ ?

(b) Is the expected number of sold copies equal to $E[X]=\sum_{i=1}^{15}x\cdot p_X(x)$ ?

Hey mathmari!

Yep. (Nod)

mathmari said:
(c) The total expected profit is the sum of expected profits from each book, right? For one book the expected profit is $(30-20)\cdot 0.50+(18-20)\cdot 0.50=4$, or isn't the probability to sell or not to sell equal to $\frac{1}{2}$ ? Is then the total profit $15\cdot 4=60$ ?

Where did you get $0.50$ from? (Wondering)

The expected profit is $\sum \operatorname{profit}(x\text{ books sold}) \cdot p_X(x)$.
If we sold $x$ books then we gained $x\cdot 30 + (15-x)\cdot 18$ and we paid $30\cdot 20$.
So $\operatorname{profit}(x) =x\cdot 30 + (15-x)\cdot 18 - 30\cdot 20$. 🤔
 
mathmari said:
(a) Do we have to check that $p_X(\Omega)=1$ and $p_X\left (\cup A_i\right )=\sum p_X(A_i)$ ? :unsure:

I got stuck right now. To show the first euality do we not use the second one? :unsure:
mathmari said:
(b) Is the expected number of sold copies equal to $E[X]=\sum_{i=1}^{15}x\cdot p_X(x)$ ? :unsure:

We have that $$E[X]=\sum_{x=1}^{15}x\cdot p_X(x)=\sum_{x=1}^{15}x\cdot \frac{x+2}{150}=\sum_{x=1}^{15}\frac{x^2+2x}{150}=\frac{148}{15}\approx 9,87$$ Is that correct? :unsure:
Klaas van Aarsen said:
The expected profit is $\sum \operatorname{profit}(x\text{ books sold}) \cdot p_X(x)$.
If we sold $x$ books then we gained $x\cdot 30 + (15-x)\cdot 18$ and we paid $30\cdot 20$.
So $\operatorname{profit}(x) =x\cdot 30 + (15-x)\cdot 18 - 30\cdot 20$. 🤔

Ah ok. So is the expected profit equal to $$\sum_{x=0}^{15}\left (x\cdot 30 + (15-x)\cdot 18 - 30\cdot 20\right )\cdot \frac{x+2}{150}=-216$$ ? In this case we start the sum from $0$, right? :unsure:
 
mathmari said:
I got stuck right now. To show the first euality do we not use the second one?

Yes. We should list each possible outcome and verify that their probabilities sum to $1$. 🤔
mathmari said:
We have that $$E[X]=\sum_{x=1}^{15}x\cdot p_X(x)=\sum_{x=1}^{15}x\cdot \frac{x+2}{150}=\sum_{x=1}^{15}\frac{x^2+2x}{150}=\frac{148}{15}\approx 9,87$$ Is that correct?

Yep. (Nod)

mathmari said:
Ah ok. So is the expected profit equal to $$\sum_{x=0}^{15}\left (x\cdot 30 + (15-x)\cdot 18 - 30\cdot 20\right )\cdot \frac{x+2}{150}=-216$$ ? In this case we start the sum from $0$, right?

I made a mistake. We paid $15\cdot 20$ instead. (Blush)

And yes, we start the sum from $0$. We should also do that at (b), although the term with $x=0$ cancels anyway. 🤔
 
Klaas van Aarsen said:
Yes. We should list each possible outcome and verify that their probabilities sum to $1$. 🤔

We have that \begin{align*}&p_X(1)=\frac{1+2}{150}=\frac{1}{50} \\ &p_X(2)=\frac{2+2}{150}=\frac{2}{75}\\ &p_X(3)=\frac{3+2}{150}=\frac{1}{30}\\ &p_X(4)=\frac{4+2}{150}=\frac{1}{25}\\ &p_X(5)=\frac{5+2}{150}=\frac{7}{150}\\ &p_X(6)=\frac{6+2}{150}=\frac{4}{75}\\ &p_X(7)=\frac{7+2}{150}=\frac{3}{50}\\ &p_X(8)=\frac{8+2}{150}=\frac{1}{15}\\ &p_X(9)=\frac{9+2}{150}=\frac{11}{150}\\ &p_X(10)=\frac{10+2}{150}=\frac{2}{25}\\ &p_X(11)=\frac{11+2}{150}=\frac{13}{150}\\ &p_X(12)=\frac{12+2}{150}=\frac{7}{75}\\ &p_X(13)=\frac{13+2}{150}=\frac{1}{10}\\ &p_X(14)=\frac{14+2}{150}=\frac{8}{75}\\ &p_X(15)=\frac{15+2}{150}=\frac{17}{150}\end{align*}
Summing these we get \begin{equation*}\frac{1}{50} +\frac{2}{75}+\frac{1}{30}+\frac{1}{25}+\frac{7}{150}+\frac{4}{75}+\frac{3}{50}+\frac{1}{15}+\frac{11}{150}+\frac{2}{25}+\frac{13}{150}+\frac{7}{75}+\frac{1}{10}+\frac{8}{75}+\frac{17}{150}=1\end{equation*} Does this follow then that $p_X$ is a probability function ? :unsure:

Klaas van Aarsen said:
And yes, we start the sum from $0$. We should also do that at (b), although the term with $x=0$ cancels anyway. 🤔

Ah can we start from $0$ although the $p_X(x)$ is defined for $x\in \{1, \ldots , 15\}$ ?
 
mathmari said:
We have that \begin{align*}&p_X(1)=\frac{1+2}{150}=\frac{1}{50} \\ &p_X(2)=\frac{2+2}{150}=\frac{2}{75}\\ &p_X(3)=\frac{3+2}{150}=\frac{1}{30}\\ &p_X(4)=\frac{4+2}{150}=\frac{1}{25}\\ &p_X(5)=\frac{5+2}{150}=\frac{7}{150}\\ &p_X(6)=\frac{6+2}{150}=\frac{4}{75}\\ &p_X(7)=\frac{7+2}{150}=\frac{3}{50}\\ &p_X(8)=\frac{8+2}{150}=\frac{1}{15}\\ &p_X(9)=\frac{9+2}{150}=\frac{11}{150}\\ &p_X(10)=\frac{10+2}{150}=\frac{2}{25}\\ &p_X(11)=\frac{11+2}{150}=\frac{13}{150}\\ &p_X(12)=\frac{12+2}{150}=\frac{7}{75}\\ &p_X(13)=\frac{13+2}{150}=\frac{1}{10}\\ &p_X(14)=\frac{14+2}{150}=\frac{8}{75}\\ &p_X(15)=\frac{15+2}{150}=\frac{17}{150}\end{align*}
Summing these we get \begin{equation*}\frac{1}{50} +\frac{2}{75}+\frac{1}{30}+\frac{1}{25}+\frac{7}{150}+\frac{4}{75}+\frac{3}{50}+\frac{1}{15}+\frac{11}{150}+\frac{2}{25}+\frac{13}{150}+\frac{7}{75}+\frac{1}{10}+\frac{8}{75}+\frac{17}{150}=1\end{equation*} Does this follow then that $p_X$ is a probability function ?

From the definition:
The probability measure $P:\mathcal{F}\to[0,1]$ is a function on $\mathcal{F}$ such that:

* $P$ is countably additive (also called σ-additive): if $\{A_i\}_{i=1}^\infty\subseteq\mathcal{F}$ is a countable collection of pairwise disjoint sets, then $\textstyle P(\bigcup_{i=1}^\infty A_i)=\sum_{i=1}^\infty P(A_i),$

* The measure of entire sample space is equal to one: $P(\Omega)=1$.


It should suffice that the sum of the probabilities of all outcomes (that are disjoint), sums up to 1 as it does. 🤔

mathmari said:
Ah can we start from $0$ although the $p_X(x)$ is defined for $x\in \{1, \ldots , 15\}$ ?
Hmm... actually we can't. (Shake)
That definition implies that we sell at least 1 book.
You verified that the sum of all probabilities starting from 1 book sold, does sum up to 1.
In other words, it is indeed not possible to sell 0 books - or rather, the probability on it is 0, which is kind of surprising. 🤔
It also means that for (c) we should start from 1.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K