MHB Expected value and equality to sums

WMDhamnekar
MHB
Messages
376
Reaction score
28
How to show that$E[N]=\displaystyle\sum_{k=1}^\infty P{\{N\geq k\}}=\displaystyle\sum_{k=0}^\infty P{\{N>k\}}$

If any member here knows the answer, may reply to this question.:confused:
 
Mathematics news on Phys.org
Dhamnekar Winod said:
How to show that$E[N]=\displaystyle\sum_{k=1}^\infty P{\{N\geq k\}}=\displaystyle\sum_{k=0}^\infty P{\{N>k\}}$

If any member here knows the answer, may reply to this question.:confused:
Hello,
'N' denote a non-negative integervalued random variable.
 
Dhamnekar Winod said:
Hello,
'N' denote a non-negative integervalued random variable.
Hello,

I got the answer after doing some carefully thinking.
 
Dhamnekar Winod said:
Hello,

I got the answer after doing some carefully thinking.

Perhaps yu'd like to share your solution so that others facing the same or similar question can benefit from your work?
 
Hello,
If we define the sequence of random variable $I_n$ (Indicator random variable), n > 1 by

$$I_n= \left \{ {1,\text{if n < X} \atop \text{0, if n>X}} \right.$$. Now express X in terms of $I_n.$ (Actually, I don't know how to express in terms of $I_n$:confused:)

I understood the equation in #1 by using the expectation of random variable X(outcome of a toss of a fair dice)is equal to summation of the probabilities of X > n, where range of n is 0 to $\infty$

I think the following below mentioned identities will be useful here.

$$ a)(1-1)^N= \left \{{\text{1, if N > 0}\atop \text{0, if n < 0}} \right.$$
$$b)(1-1)^N=\displaystyle\sum_{n=0}^n\binom{N}{i}*(-1)^i$$

$$ c)1-I=\displaystyle\sum_{n=0}^n\binom{N}{i}*(-1)^i$$

$$ d)I=\displaystyle\sum_{n=1}^n\binom{N}{i}*(-1)^i$$

If you want to show this equation in mathematical language, you may reply to that effect.:)
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top