What kind of interaction hamiltonians would prevent interference? Are they non-hermitian?
No, they are just the usual hermitian interaction hamiltonians that occur in nature. The main point is that if you have a macroscopic system, such as the pointer on a measuring device, it is likely to couple to environmental degrees of freedom (the em field, dust particles, etc.) very differently depending on its state in position space. Then, you would have to be able to control all of these environmental degrees of freedom on a quantum level in order to cause the different position states of the pointer to reinterfere. This is impossible in practice, so we can apply the projection postulate to make effective predictions once we know that the system has interacted with the measuring device.
Instead of saying, for instance, that there's a 50% chance of a particle being in a spin up state, you'd say that 50% of the states in the superposition correspond to spin up registering on the measuring device. Instead of saying you're very likely to see about 50 spin-ups in 100 experiments, you'd say that most of the states in the superposition correspond to about 50 spin-ups detected in the 100 experiments.
Of course, you can say that, but the fact of the matter is that it appears to us that measurements have actual outcomes, rather than being terms in a superposition, so you have to explain why we have this experience.
More, seriously, it works well for the situation that you describe, but what about unequal superpositions, e.g.
\frac{1}{\sqrt{3}}| \mbox{up} z \rangle | \mbox{measuring device registers up} \rangle + \frac{\sqrt{2}}{\sqrt{3}} | \mbox{down} z \rangle | \mbox{measuring device registers down} z \rangle<br />
There are only two terms in the superposition, so by your prescription the probabilities should be 50-50. However, the actual QM probabilities are 1/3 and 2/3. You have to explain why we can give a probability interpretation to the amplitudes of states, rather than just the number of terms.
Another, problem is how do you decide which basis it is OK to make the probability statement in? I could decompose the spin state in the x-basis, and then the relative states of the measuring device would be superpositions of the "registers up" and "registers down" states.
All these are problems that afflict any interpretation wherein QM is complete and the wavefunction is taken to be a literal specification of the state of reality, such as many worlds. I am not saying that these questions have no good answers, since the many-worlders have come up with several ingenious proposals (albeit proposals that are not universally accepted). The main point, is just that there must be more to it than simply reading the probabilities directly from the wavefunction.