Explicit demonstration of a measurement interaction

Click For Summary
The discussion centers on the measurement interaction in quantum mechanics, specifically how an initial unentangled state evolves into a final state through a tensor product operator. The time-development operator is expressed in terms of the Hamiltonian, leading to a transformation of the initial state into a post-interaction state that incorporates the effects of the measurement. The expectation value of the product of position operators, ##\expec{Q^{(1)}Q^{(2)}}##, is computed to explore correlations between the particle and the measurement apparatus. There is confusion regarding the interpretation of the measurement value of ##Q^{(2)}## and how it relates to the initial state of the object. The goal is to establish a relationship between the entangled states of the particle and the detector, indicating that measuring one leads to information about the other.
EE18
Messages
112
Reaction score
13
Homework Statement
See below.
Relevant Equations
See below.
$$\newcommand{\bra}[1]{\left \langle #1 \right \rvert}
\newcommand{\braxket}[3]{\left \langle #1 \middle \rvert #2 \middle \rvert #3 \right \rangle}
\newcommand{\ket}[1]{\left \rvert #1 \right \rangle}
\newcommand{\expec}[1]{\langle #1 \rangle}$$

Ballentine asks us the question at the end of this post. I am unclear on how to proceed because of the exponential of a tensor product operator.

My work:

We note from the outset that ##c## is unitless, as is obvious on dimensional grounds.

Suppose we have some initial, unentangled state (we assume pure states). The initial state of the object is some superposition of position states, of course.
$$\ket{\Psi_0} = \ket{\psi_0} \otimes \ket{\alpha},$$
where ##\ket{\alpha} = \int dx \, \alpha(x) \ket{x}## denotes a preparatory state of the apparatus and ##\ket{\psi_0} = \int dx\, \psi_0(x) \ket{x}## is the initial state of the object. We note that the time-development operator is given by
$$U(t) = e^{-i\int dt\, H(t)/\hbar} = e^{-icQ^{(1)}P^{(2)}\int dt\, \delta(t)/\hbar} = e^{-icQ^{(1)}P^{(2)}/\hbar}.$$
We now consider the measurement interaction:
$$\ket{\Psi_0} = \ket{\psi_0} \otimes \ket{\alpha} \to \ket{\Psi_f} = e^{-icQ^{(1)}P^{(2)}/\hbar}\ket{\psi_0} \otimes \ket{\alpha} = \int dx \int dx' \, \psi_0(x) \alpha(x') \left[ e^{-icQ^{(1)}P^{(2)}/\hbar} \ket{x} \otimes \ket{x'} \right]$$
$$ = \int dx \int dx' \, \psi_0(x) \alpha(x') \sum_{n = 0}^\infty \frac{1}{n!} \left[(-icQ^{(1)}P^{(2)}/\hbar)^n \ket{x} \otimes \ket{x'} \right]$$
$$= \int dx \int dx' \, \psi_0(x) \alpha(x') \sum_{n = 0}^\infty \frac{1}{n!} \left(\frac{-ic}{\hbar} \right)^n \left((Q^{(1)})^n \ket{x}\right) \otimes \left((P^{(2)})^n \ket{x'}\right) $$
$$= \int dx \int dx' \, \psi_0(x) \alpha(x') \sum_{n = 0}^\infty \frac{1}{n!}\left(\frac{-icx}{\hbar} \right)^n \ket{x} \otimes \left((P^{(2)})^n \ket{x'}\right) $$
$$\stackrel{(1)}{=} \int dx \int dx' \, \psi_0(x) \alpha(x') \ket{x} \otimes \left(\sum_{n = 0}^\infty \frac{1}{n!}\left(\frac{-icx}{\hbar}P^{(2)} \right)^n \ket{x'}\right)$$
$$ = \int dx \int dx' \, \psi_0(x) \alpha(x') \ket{x} \otimes \left(e^{\frac{-icx}{\hbar}P^{(2)}} \ket{x'}\right)$$
$$ = \int dx\, \psi_0(x) \ket{x}\otimes \left(\int dx' \, e^{\frac{-icx}{\hbar}P^{(2)}} \ket{x'}\alpha(x')\right)$$
$$ = \int dx\, \psi_0(x) \ket{x}\otimes \left(\int dx' \, e^{\frac{-icx}{\hbar}P^{(2)}} \ket{x'}\bra{x'}\ket{\alpha}\right)$$
$$\int dx\, \psi_0(x) \ket{x}\otimes \left( e^{\frac{-icx}{\hbar}P^{(2)}}\ket{\alpha}\right)$$
$$ \equiv \int dx\, \psi_0(x) \ket{x}\otimes \left( T^{(2)}(cx)\ket{\alpha}\right),$$
where in (1) we use the linearity of the tensor product and where in the last equality we have identified the translation operator.

Now let's consider computing ##\expec{Q^{(1)}Q^{(2)}}## on the post-interaction state (this expectation value is related to the correlation coefficient and has been the proxy which Ballentine uses for correlation). We obtain
$$\expec{Q^{(1)}Q^{(2)}} = \left[ \int dx'\, \psi^*_0(x') \bra{x'}\otimes \left( \bra{\alpha}T^{(2)}(-cx')\right)\right]Q^{(1)}Q^{(2)} \left[ \int dx\, \psi_0(x) \ket{x}\otimes \left( T^{(2)}(cx)\ket{\alpha}\right)\right]$$
$$ \stackrel{(1)}{=} \int dx \, x|\psi^*_0(x)|^2 \bra{\alpha}T^{(2)}(-cx)Q^{(2)}T^{(2)}(cx)\ket{\alpha}$$
where in (1) we've used the inner product definition on a tensor product space and ##\braxket{x'}{Q^{(1)}}{x} = x\delta(x-x')##.

But this doesn't seem to be what Ballentine wants in the end. What does he mean by the "value of ##Q^{(2)}##? I also can't see where to go past where I've gotten to. If anyone can help out I'd greatly appreciate it.

Screen Shot 2023-08-11 at 2.47.23 PM.png
 
Physics news on Phys.org
I think, it's easier to keep the time finite. The interaction operator is simple since the operator at different times commute. Thus the time-evolution operator of states in the interaction picture simply is (with ##t_0<0## to avoid trouble with the ##\delta## distribution)
$$\hat{C}(t,t_0)=exp \left (-\mathrm{i} \int_{0}^t \mathrm{d} t' \hat{H}_I(t')/\hbar \right ) = \exp[-\mathrm{i} c \hat{Q}^{(1)} \hat{P}^{(2)}/\hbar \Theta(t)].$$
Low you can set ##t>0## and just evaluate
$$|q^{(1)},q^{(2)},t \rangle=\exp(-\mathrm{i} c \hat{Q}^{(1)} \hat{P}^{(2)}/\hbar) |q^{(1)},q^{(2)},0 \rangle,$$
and then use the result to calculate the "asymptotic free state"
$$|\Psi' \rangle =\int_{q^{(1)},q^{(2)}} \mathrm{d} q^{(1)} \mathrm{d} q^{(2)} \exp(-\mathrm{i} c \hat{Q}^{(1)} \hat{P}^{(2)}/\hbar) |q^{(1)},q^{(2)},0 \rangle \langle q^{(1)},q^{(2)},0|\Psi_0 \rangle.$$
 
vanhees71 said:
I think, it's easier to keep the time finite. The interaction operator is simple since the operator at different times commute. Thus the time-evolution operator of states in the interaction picture simply is (with ##t_0<0## to avoid trouble with the ##\delta## distribution)
$$\hat{C}(t,t_0)=exp \left (-\mathrm{i} \int_{0}^t \mathrm{d} t' \hat{H}_I(t')/\hbar \right ) = \exp[-\mathrm{i} c \hat{Q}^{(1)} \hat{P}^{(2)}/\hbar \Theta(t)].$$
Low you can set ##t>0## and just evaluate
$$|q^{(1)},q^{(2)},t \rangle=\exp(-\mathrm{i} c \hat{Q}^{(1)} \hat{P}^{(2)}/\hbar) |q^{(1)},q^{(2)},0 \rangle,$$
and then use the result to calculate the "asymptotic free state"
$$|\Psi' \rangle =\int_{q^{(1)},q^{(2)}} \mathrm{d} q^{(1)} \mathrm{d} q^{(2)} \exp(-\mathrm{i} c \hat{Q}^{(1)} \hat{P}^{(2)}/\hbar) |q^{(1)},q^{(2)},0 \rangle \langle q^{(1)},q^{(2)},0|\Psi_0 \rangle.$$
Perhaps I don't follow, but isn't your last line more or less what I've given in my last line? Would you be able to comment on how ##Q^2## now provides a measurement of the initial state of the object's position ##Q^2## beforehand?
 
May be, I'm not sure. What should come out is an entangled state between the particle and the detector such that a measurement of ##Q^{(2)}## (reading of the pointer position) leads to a measurement of ##Q^{(1)}## (position of the particle). So you should calculate the state after the interaction and discuss.
 
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...
Thread 'Conducting Sphere and Dipole Problem'
Hi, I'm stuck at this question, please help. Attempt to the Conducting Sphere and Dipole Problem (a) Electric Field and Potential at O due to Induced Charges $$V_O = 0$$ This potential is the sum of the potentials due to the real charges (##+q, -q##) and the induced charges on the sphere. $$V_O = V_{\text{real}} + V_{\text{induced}} = 0$$ - Electric Field at O, ##\vec{E}_O##: Since point O is inside a conductor in electrostatic equilibrium, the electric field there must be zero...