- #1

docnet

Gold Member

- 748

- 410

- Homework Statement
- psb

- Relevant Equations
- psb

\begin{equation}

\psi_0(x)=\Big(\frac{m\omega}{\pi\hbar}\Big)^{\frac{1}{4}}e^{\frac{-m\omega}{2\hbar}x^2}

\end{equation}

\begin{equation}

\psi_1(x)=\Big(\frac{m\omega}{\pi\hbar}\Big)^{\frac{1}{4}}\sqrt{\frac{2m\omega}{\hbar}}xe^{\frac{-m\omega}{2\hbar}x^2}

\end{equation}

(a) Construct a state for the particle that is a linear combination

$$\psi(x)=b_0\psi_0(x)+b_1\psi_1(x)$$

$$\psi(x)=b_0\Big(\frac{m\omega}{\pi\hbar}\Big)^{\frac{1}{4}}e^{\frac{-m\omega}{2\hbar}x^2}+b_1\Big(\frac{m\omega}{\pi\hbar}\Big)^{\frac{1}{4}}\sqrt{\frac{2m\omega}{\hbar}}xe^{\frac{-m\omega}{2\hbar}x^2}$$

Find ##b_1## in terms of ##b_0##.

$$\int_0^a<b_0\psi_0+b_1\psi_1|b_0\psi_0+b_1\psi_1>dx=1$$

$$b_0^2+b_1^2=1$$

$$b_1=\sqrt{1-b_0^2}$$

(b) Which particular linear combination will maximize ##<\psi|\hat{x}|\psi>##?

$$<\psi|\hat{x}|\psi>=\Big<b_0\psi_0(x)+b_1\psi_1(x)\Big|\sqrt{\frac{\hbar}{2m\omega}}(\hat{a}+\hat{a}^{\dagger})\Big|b_0\psi_0(x)+b_1\psi_1(x)\Big>$$

$$=\sqrt{\frac{\hbar}{2m\omega}}\Big<b_0\psi_0(x)+b_1\psi_1(x)\Big|b_1\psi_{0}(x)+b_0\psi_1(x)+b_1\sqrt{2}\psi_2(x)\Big>$$

$$=b_0b_1\sqrt{\frac{\hbar}{2m\omega}}\int^a_0\Big(\psi_0(x)^2+\psi_1(x)^2\Big)dx$$

maximize ##b_0=b_1## ##\rightarrow## ##<\psi|\hat{x}|\psi>##.

$$\frac{d}{db_0}b_0\sqrt{1-b_0^2}=\sqrt{1-b_0^2}-\frac{b_0^2}{\sqrt{1-b_0^2}}=0\Rightarrow b_0,b_1=\sqrt{\frac{1}{2}}$$

$$max(b_0,b_1)\Rightarrow (\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$$