Exploring Epsilon Simultaneity: Advantages and Applications

  • Context: Graduate 
  • Thread starter Thread starter etotheipi
  • Start date Start date
  • Tags Tags
    Epsilon Simultaneity
Click For Summary
SUMMARY

The discussion centers on the generalized simultaneity criterion defined by the equation ##t = (1-\epsilon)t_1 + \epsilon t_2##, where ##\epsilon## varies between 0 and 1. Participants argue that while this approach may not provide practical solutions, it highlights the conventional nature of the one-way speed of light and its implications in different coordinate systems. The analogy to non-orthogonal coordinate systems in crystallography illustrates the potential utility of this concept, particularly in understanding the synchronization of clocks in non-inertial frames, such as those on Earth's surface.

PREREQUISITES
  • Understanding of the special theory of relativity
  • Familiarity with the concept of simultaneity in physics
  • Basic knowledge of crystallography and coordinate systems
  • Awareness of the implications of non-orthogonal coordinates
NEXT STEPS
  • Research the implications of the one-way speed of light as a convention in physics
  • Explore the concept of non-orthogonal coordinate systems in crystallography
  • Study the synchronization of clocks in non-inertial frames, particularly in rotating systems
  • Investigate the Weiß zone law and its applications in crystallographic systems
USEFUL FOR

Physicists, mathematicians, and crystallographers interested in the implications of simultaneity and coordinate systems in both theoretical and applied contexts.

etotheipi
What is the advantage of considering the generalised simultaneity criterion ##t = (1-\epsilon)t_1 + \epsilon t_2## for ##\epsilon## between ##0## and ##1##? How does varying the parameter ##\epsilon## help to elucidate the structure of the special theory? I think the surfaces of simultaneity are no longer so intuitive. I wondered whether this is helpful to solve some problems or just a gimmick.
 
Physics news on Phys.org
I would say that it is not helpful, at least I have never seen a place where it is helpful. It's only value is that it establishes that the one-way speed of light is a convention and that you can (if you are a masochist) adopt a convention where the one-way speed of light is not c and still be consistent with the data.
 
  • Like
Likes   Reactions: etotheipi
It's analogous to adopting a coordinate system in Euclidean space where one of the axes isn't perpendicular to the others. That can be useful in crystallography, I seem to recall, because the natural directions in some crystals are non-orthogonal.

One thought - didn't we discuss recently that clocks on the surface of the Earth are usually synchronised in the Earth-centered frame, but their worldlines are not orthogonal to that? So (locally) we're all using an ##\epsilon## that isn't quite 0.5?
 
  • Like
Likes   Reactions: etotheipi
I was just revising this today! Body-centred lattices have a primitive basis ##\{ \frac{a}{2}(\hat{\mathbf{y}} + \hat{\mathbf{z}} - \hat{\mathbf{x}}), \frac{a}{2}(\hat{\mathbf{z}} + \hat{\mathbf{x}} - \hat{\mathbf{y}}), \frac{a}{2}(\hat{\mathbf{x}} + \hat{\mathbf{y}} - \hat{\mathbf{z}})\}## whilst face-centred lattices have a primitive basis ##\{\frac{a}{2}(\hat{\mathbf{y}} + \hat{\mathbf{z}}), \frac{a}{2}(\hat{\mathbf{z}} + \hat{\mathbf{x}}), \frac{a}{2}(\hat{\mathbf{x}} + \hat{\mathbf{y}}) \}##. But we hardly ever used these in favour of the canonical basis. The silver lining for the primitive basis is that the Weiß zone law ##hU + kV + lW = 0## holds in any crystallographic system, but apart from that you are just stuck with annoying calculations with the metric
 
You doubtless know more crystallography than I remember... I was just thinking of it as a physical circumstance where we might reasonably choose to use non-orthogonal coordinates. The Earth's rotation forces a vaguely analogous circumstance where the only sensible global simultaneity criterion is not orthogonal to the helical worldlines of clocks at rest on the surface. So Einstein-synchronised clocks on the east and west sides of a lab aren't quite synchronised per GMT, I think.
 
  • Like
Likes   Reactions: etotheipi
The easy way to see it is to imagine the set of helical worldlines of clocks on the equator. The congruence forms a cylindrical worldsheet. Except in the special case of zero rotation the planes orthogonal to the worldlines are all "slanted" in the same sense as you go around the cylinder. You can't have a closed loop without slanting the loop in the opposite sense in at least one place.
 
  • Like
Likes   Reactions: etotheipi

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 37 ·
2
Replies
37
Views
4K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K