- #1

erikasan

- 2

- 4

- TL;DR Summary
- Does μ have to be a relevant energy scale to the scattering process considered or is it arbitrary?

I have a question about the ##\mu## in dimensional regularization and how it is related to renormalization conditions. I follow the same notation and conventions as in Schwartz. Take QED as an example:

$$\mathcal{L} =-\frac{1}{4}\left( F_{0}^{\mu \nu }\right)^{2} +\overline{\psi }_{0}\left( i\gamma ^{\mu } \partial _{\mu } -m_{0}\right) \psi _{0} -e_{0}\overline{\psi }_{0} \gamma _{\mu } A_{0}^{\mu } \psi _{0}$$ where the subscript ##0## indicates that it is the bare field/mass/charge. The ##\mu## arises when writing the bare charge on the form $$e_{0} =Z_{e} \mu ^{\frac{4-d}{2}} e_{R}$$ where ##e_R## is the renormalized charge, ##Z_e## is the dimensionless charge renormalization and ##\mu## is chosen to have mass dimension ##1## such that ##e_R## is dimensionless in any spacetime dimension.

Now I'm wondering about the importance of the

To me the ##\mu## is similar to the gauge-fixing parameter ##\xi## that arises from the Faddeev-Popov procedure; it determines the form of the gauge boson propagator but I can pick whatever value of ##\xi## I like. Similarly, assuming that some subtraction scheme has been chosen for ##Z_e##, the value of ##\mu## determines the value of ##e_R## but I can pick whatever value of ##\mu## I like. If I vary ##\mu## then ##e_R## must vary in such a way that the bare charge ##e_0## remains unchanged, which to me is just the statement of the renormalization group equation $$\mu \frac{d}{d\mu } e_{0} =0.$$ But while I

Is this thinking correct or is there a flaw in the argument somewhere? Is ##\mu## truly arbitrary and is a renormalization condition essentially something that fixes all unphysical degrees of freedom introduced when rewriting the bare parameters in the Lagrangian? To me this sounds exactly like what's happening in the on-shell renormalization scheme for the fermion mass in QED: I set the infinite parts of the counterterms to exactly cancel any UV divergences, but I also introduce an arbitrary unphysical finite part to the counterterms which I can choose in such a way that the renormalized mass is exactly equal to the pole mass.

$$\mathcal{L} =-\frac{1}{4}\left( F_{0}^{\mu \nu }\right)^{2} +\overline{\psi }_{0}\left( i\gamma ^{\mu } \partial _{\mu } -m_{0}\right) \psi _{0} -e_{0}\overline{\psi }_{0} \gamma _{\mu } A_{0}^{\mu } \psi _{0}$$ where the subscript ##0## indicates that it is the bare field/mass/charge. The ##\mu## arises when writing the bare charge on the form $$e_{0} =Z_{e} \mu ^{\frac{4-d}{2}} e_{R}$$ where ##e_R## is the renormalized charge, ##Z_e## is the dimensionless charge renormalization and ##\mu## is chosen to have mass dimension ##1## such that ##e_R## is dimensionless in any spacetime dimension.

Now I'm wondering about the importance of the

*value*of ##\mu##. My professor seems to be insisting that, in spite of the theory being independent of ##\mu## and observables being independent of ##\mu##, the value of ##\mu## must be some relevant energy scale to some scattering process considered. To me this is odd because I can consider several different processes in QED and vary the center of mass energy in each of them independently however I like, and I won't necessarily be able to set ##\mu## equal to some energy scale that is relevant to all of them at once. And in the end, if observables are independent of ##\mu## then it sounds to me like the value is utterly arbitrary. But ##\mu## being some relevant energy scale is still what's being insisted and it makes me doubt whether I've really understood what renormalization conditions and renormalized couplings really are. So I want to get a second opinion to double-check this.To me the ##\mu## is similar to the gauge-fixing parameter ##\xi## that arises from the Faddeev-Popov procedure; it determines the form of the gauge boson propagator but I can pick whatever value of ##\xi## I like. Similarly, assuming that some subtraction scheme has been chosen for ##Z_e##, the value of ##\mu## determines the value of ##e_R## but I can pick whatever value of ##\mu## I like. If I vary ##\mu## then ##e_R## must vary in such a way that the bare charge ##e_0## remains unchanged, which to me is just the statement of the renormalization group equation $$\mu \frac{d}{d\mu } e_{0} =0.$$ But while I

*in principle*could have chosen ##\mu## to be anything (I think),*in practice*##\mu## is often chosen such that ##e_R## becomes sort of a "reference value" of an observable at some particular energy scale. As an example, say I have calculated the (Fourier transformed) Coulomb potential $$\tilde{V}\left( p^{2}\right) =\frac{e_{R}^{2}}{p^{2}}\left[ 1-\Sigma \left( p^{2}\right) -\delta \right]$$ where ##\Sigma## are corrections from loop diagrams and ##\delta## is a counterterm. To one-loop the ##\Sigma## is something like $$\Sigma \left( p^{2}\right) =e^{2}_R\left[\frac{2}{\epsilon } +\ln\frac{\mu ^{2}}{p^{2}}\right]$$ where ##\epsilon## stems from taking ##d=4-\epsilon## and where I've omitted uninteresting factors and an integral over Feynman parameters. In minimal subtraction I set ##\delta =-2e^{2} /\epsilon##, but that still seemingly leaves an unphysical degree of freedom ##\mu## in my observable ##\tilde{V}\left( p^{2}\right)##. Now I claim that I can*choose*##\mu## such that ##e_R## satisfies $$\tilde{V}\left( p_{0}^{2}\right) =\frac{e_{R}^{2}}{p_{0}^{2}}$$ at some arbitrary energy scale ##p^2_0##. This is what I mean by ##e_R## being a "reference value" of my observable, because I have*defined it*to be ##e^2_R=p_{0}^{2} \tilde{V}\left( p_{0}^{2}\right)##. This is my renormalization condition, and corresponds to setting $$-\Sigma \left( p_{0}^{2}\right) -\delta =0.$$ Now I can write my observable on a form that is explicitly independent of ##\mu##: \begin{align*} \tilde{V}\left( p^{2}\right) & =\frac{e_{R}^{2}}{p^{2}}\left[ 1-\Sigma \left( p^{2}\right) -\delta \right]\\ & =\frac{e_{R}^{2}}{p^{2}}\left[ 1-\Sigma \left( p^{2}\right) -\delta -0\right]\\ & =\frac{e_{R}^{2}}{p^{2}}\left[ 1-\Sigma \left( p^{2}\right) -\delta +\Sigma \left( p_{0}^{2}\right) +\delta \right]\\ & =\frac{e_{R}^{2}}{p^{2}}\left[ 1-\Sigma \left( p^{2}\right) +\Sigma \left( p_{0}^{2}\right)\right]\\ & =\frac{e_{R}^{2}}{p^{2}}\left[ 1-e_{R}^{2}\ln\frac{p^{2}}{p_{0}^{2}}\right] \end{align*} which apart from the not very illuminating numerical factors and integral over Feynman parameters agrees with Schwartz Eq. (23.4).Is this thinking correct or is there a flaw in the argument somewhere? Is ##\mu## truly arbitrary and is a renormalization condition essentially something that fixes all unphysical degrees of freedom introduced when rewriting the bare parameters in the Lagrangian? To me this sounds exactly like what's happening in the on-shell renormalization scheme for the fermion mass in QED: I set the infinite parts of the counterterms to exactly cancel any UV divergences, but I also introduce an arbitrary unphysical finite part to the counterterms which I can choose in such a way that the renormalized mass is exactly equal to the pole mass.