MHB Exponential Growth & Decay Question

ISITIEIW
Messages
17
Reaction score
0
Suppose that there is initially x(not) grams of Kool-Aid powder in a glass of water. After 1 minute there are 3 grams remaining and after 3 minutes there is only 1 gram remaining. Find x(not) and the amount of Kool-Aid powder remaining after 5 minutes…

So, i set up 2 equations…

3=x(not)e^-k(1)

and 1=x(not)e^-k(3)

I know it is decaying ,but i don't know what i have to do with these equations that i made to find the value of k.

Thanks !
 
Mathematics news on Phys.org
Since there is no actual calculus involve in solving this problem, I am going to move the topic to our Pre-Calculus sub-forum.

You're off to a good start:

$$x_0e^{-k}=3$$

$$x_0e^{-3k}=1$$

I think what I would do next is solve both equations for $x_0$ and equate:

$$x_0=3e^{k}=e^{3k}$$

Next try dividing through by $e^k$ and then convert from exponential to logarithmic form.
 
Thanks!
I got k to be 0.549306144
and got a x(not) value of 5.196152423

I got it from here !
Thanks :)
 
ISITIEIW said:
Thanks!
I got k to be 0.549306144
and got a x(not) value of 5.196152423

I got it from here !
Thanks :)

You're welcome! :D

I would get in the habit of obtaining/writing exact values rather than decimal approximations. I find:

$$k=\ln\left(\sqrt{3} \right)$$

$$x_0=3\sqrt{3}$$

I realize it is possible that you found these values and simply chose to write the approximations. (Angel)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top