MHB Exponential Growth & Decay Question

ISITIEIW
Messages
17
Reaction score
0
Suppose that there is initially x(not) grams of Kool-Aid powder in a glass of water. After 1 minute there are 3 grams remaining and after 3 minutes there is only 1 gram remaining. Find x(not) and the amount of Kool-Aid powder remaining after 5 minutes…

So, i set up 2 equations…

3=x(not)e^-k(1)

and 1=x(not)e^-k(3)

I know it is decaying ,but i don't know what i have to do with these equations that i made to find the value of k.

Thanks !
 
Mathematics news on Phys.org
Since there is no actual calculus involve in solving this problem, I am going to move the topic to our Pre-Calculus sub-forum.

You're off to a good start:

$$x_0e^{-k}=3$$

$$x_0e^{-3k}=1$$

I think what I would do next is solve both equations for $x_0$ and equate:

$$x_0=3e^{k}=e^{3k}$$

Next try dividing through by $e^k$ and then convert from exponential to logarithmic form.
 
Thanks!
I got k to be 0.549306144
and got a x(not) value of 5.196152423

I got it from here !
Thanks :)
 
ISITIEIW said:
Thanks!
I got k to be 0.549306144
and got a x(not) value of 5.196152423

I got it from here !
Thanks :)

You're welcome! :D

I would get in the habit of obtaining/writing exact values rather than decimal approximations. I find:

$$k=\ln\left(\sqrt{3} \right)$$

$$x_0=3\sqrt{3}$$

I realize it is possible that you found these values and simply chose to write the approximations. (Angel)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top