MHB Express cos(2 tan^-1(x/4)) and sin(2tan^-1(x/4) as an algebraic expression in x

  • Thread starter Thread starter Elissa89
  • Start date Start date
  • Tags Tags
    Expression
Click For Summary
The discussion focuses on expressing cos(2 tan^-1(x/4)) and sin(2 tan^-1(x/4)) as algebraic expressions in terms of x. Participants provide their attempts, with one user suggesting expressions involving square roots and fractions. Another user clarifies the relationship between the angle and its tangent, emphasizing that 2 tan^-1(x/4) represents double the angle rather than a simple division of x. The conversation highlights the need for careful manipulation of trigonometric identities to derive the correct expressions. Overall, the thread illustrates the complexities of transforming inverse tangent functions into algebraic forms.
Elissa89
Messages
52
Reaction score
0
So my professor gave us a study guide for the final but no there is no answer key. Could someone check my answers please?

Express cos(2 tan^-1(x/4)) and sin(2tan^-1(x/4) as an algebraic expression in x

I got:

cos(theta)=8*sqrt(x^2+64)/x^2+64

sin(theta)=x*sqrt(x^2+64)/x^2+64
 
Mathematics news on Phys.org
Elissa89 said:
So my professor gave us a study guide for the final but no there is no answer key. Could someone check my answers please?

Express cos(2 tan^-1(x/4)) and sin(2tan^-1(x/4) as an algebraic expression in x

I got:

cos(theta)=8*sqrt(x^2+64)/x^2+64

sin(theta)=x*sqrt(x^2+64)/x^2+64

Let $t = \tan^{-1}\left(\dfrac{x}{4}\right) \implies \tan{t} = \dfrac{x}{4}, \, \cos{t} = \dfrac{4}{\sqrt{x^2+16}}, \, \sin{t} = \dfrac{x}{\sqrt{x^2+16}}$$\cos(2t) = 2\cos^2{t}-1$

$\sin(2t) = 2\sin{t}\cos{t}$

take it from here?
 
skeeter said:
Let $t = \tan^{-1}\left(\dfrac{x}{4}\right) \implies \tan{t} = \dfrac{x}{4}, \, \cos{t} = \dfrac{4}{\sqrt{x^2+16}}, \, \sin{t} = \dfrac{x}{\sqrt{x^2+16}}$$\cos(2t) = 2\cos^2{t}-1$

$\sin(2t) = 2\sin{t}\cos{t}$

take it from here?

but its 2*tan^-1(x/4). Isn't that the same as 2*tan(theta)=x/4. So wouldn't I divide both sides by 2 and get x/8 and go from there?
 
Elissa89 said:
but its 2*tan^-1(x/4). Isn't that the same as 2*tan(theta)=x/4. So wouldn't I divide both sides by 2 and get x/8 and go from there?

no.

$\theta = 2\tan^{-1}\left(\dfrac{x}{4}\right) \implies \dfrac{\theta}{2} = \tan^{-1}\left(\dfrac{x}{4}\right) \implies \dfrac{x}{4} = \tan\left(\dfrac{\theta}{2}\right)$

note $\tan^{-1}\left(\dfrac{x}{4}\right)$ is an angle and $2 \tan^{-1}\left(\dfrac{x}{4}\right)$ is double that angle
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
1
Views
4K
Replies
7
Views
2K
Replies
2
Views
2K
Replies
1
Views
8K
Replies
5
Views
1K
Replies
3
Views
3K