The sum of the $k$ th power of n variables $\sum_{i=1}^{i=n} x_i^k$ is a symmetric polynomial, so it can be written as a sum of the elementary symmetric polynomials.(adsbygoogle = window.adsbygoogle || []).push({});

I do know about the Newton's identities, but just with the algorithm of proving the symmetric function theorem, what should we do with $k=1,2,3,4$ and an arbitary $n$? Here seems to be a solution, with the usage of a remark of proving the theorem using the algorithm. But I cannot understand what does the remark actually meaning and where does it come from. Could someone explain? Thanks so much!

http://www-users.math.umn.edu/~Garrett/m/algebra/notes/15.pdf

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Express power sums in terms of elementary symmetric function

Have something to add?

Draft saved
Draft deleted

Loading...

**Physics Forums | Science Articles, Homework Help, Discussion**