Expressing the magnetic vector potential A-field in terms of the B-field

Click For Summary
SUMMARY

The discussion focuses on expressing the magnetic vector potential \(\mathbf{A}\) in terms of the magnetic field \(\mathbf{B}\). The participants reference the equations for \(\mathbf{A}\) and \(\mathbf{B}\) derived from the retarded potentials, specifically highlighting the relationship between them under different gauge conditions. The Coulomb gauge is emphasized as a simpler approach for expressing \(\mathbf{A}\) as a functional of \(\mathbf{B}\), particularly in magnetostatics. The conversation concludes with a suggestion to rearrange equation 35 to isolate \(\mathbf{A}\) or \(\partial \mathbf{A}/\partial t\).

PREREQUISITES
  • Understanding of vector calculus, particularly curl and divergence operations.
  • Familiarity with electromagnetic theory, specifically the concepts of magnetic vector potential and magnetic fields.
  • Knowledge of gauge conditions, including Coulomb and Lorenz gauges.
  • Experience with retarded potentials in electrodynamics.
NEXT STEPS
  • Study the derivation of the Biot-Savart law in magnetostatics.
  • Learn about the implications of gauge choices in electromagnetic theory.
  • Explore the mathematical techniques for solving partial differential equations in the context of electromagnetism.
  • Investigate the relationship between electric fields and magnetic fields in dynamic systems, particularly through the Ampere-Maxwell Law.
USEFUL FOR

Physicists, electrical engineers, and students in advanced electromagnetism courses who seek to deepen their understanding of the relationships between magnetic vector potentials and magnetic fields.

tade
Messages
720
Reaction score
26
We have a retarded magnetic vector potential ##\mathbf{A}(\mathbf{r},t) = \dfrac{\mu_0}{4\pi} \int \dfrac{\mathbf{J}(\mathbf{r}',t_r)}{|\mathbf{r}-\mathbf{r}'|} \mathrm{d}^3 \mathbf{r}'##

And its curl, ##\mathbf{B}(\mathbf{r}, t) = \frac{\mu_0}{4 \pi} \int \left[\frac{\mathbf{J}(\mathbf{r}', t_r)}{|\mathbf{r}-\mathbf{r}'|^3} + \frac{1}{|\mathbf{r}-\mathbf{r}'|^2 c}\frac{\partial \mathbf{J}(\mathbf{r}', t_r)}{\partial t} \right] \times (\mathbf{r}-\mathbf{r}') \,\mathrm{d}^3 \mathbf{r}'##I would like to express A in terms of B

In this paper, equation 35 looks like a promising step on the way there:$$\mathbf{A}=\frac{1}{4 \pi c^{2}} \frac{\partial}{\partial t} \int \frac{\left[\boldsymbol{\nabla}^{\prime} \Phi+\partial \mathbf{A} / \partial t\right]}{R} d^{3} r^{\prime}+\boldsymbol{\nabla} \times \int \frac{[\mathbf{B}]}{4 \pi R} d^{3} r^{\prime}$$Unfortunately, it has ∂A/∂t on the RHS, and it also has a ∇'Φ.
I'm not sure if the correct answer involves ΦIf its easier to express ∂A/∂t in terms of B, rather than A in terms of B, that'll do just fine as well.
 
Last edited:
Physics news on Phys.org
Isn’t it just ##A=\nabla \times B##
 
  • Haha
Likes   Reactions: tade
Dale said:
Isn’t it just ##A=\nabla \times B##
B is supposed to be the curl of A, and A the inverse curl of B
 
  • Like
Likes   Reactions: Dale and vanhees71
Argh, somehow my posting got completely distorted. Here it's again:

You can of course express ##\vec{A}## as a functional of ##\vec{B}##, but it's easier in the Coulomb gauge than in the Lorenz gauge. You simply impose ##\vec{\nabla} \cdot \vec{A}=0## (Coulomb-gauge condition) and then you have
$$\vec{\nabla} \times \vec{B} = \vec{\nabla} \times (\vec{\nabla} \times \vec{A})=-\Delta \vec{A},$$
with the solution
$$\vec{A}(t,\vec{x})=\int_{\mathbb{R}^3} \frac{\vec{\nabla}' \times \vec{B}(t,\vec{x}')}{4 \pi |\vec{x}-\vec{x}'|}.$$
Note however that this is useless except for the special case of magnetostatics, because in this case ##\partial_t \vec{E}=0## and thus the Ampere-Maxwell Law simplifies to the Ampere Law,
$$\vec{\nabla} \times \vec{B}(\vec{x})=\vec{j}(\vec{x}),$$
and you simply get Biot-Savart's formula for the Coulomb-gauge vector potential of magnetostatics,
$$\vec{B}(\vec{x})=\int_{\mathbb{R}^3} \mathrm{d}^3 x' \frac{\vec{j}(\vec{x}')}{4 \pi |\vec{x}-\vec{x}'|}.$$
This is, btw also the result of the retarded potential in this case, because since ##\partial_t A^0=0## the Lorenz gauge condition is ##\partial_{\mu} A^{\mu}=\vec{\nabla} \cdot \vec{A}=0## and thus it coincides with the Coulomb gauge in this special case.
 
  • Like
Likes   Reactions: marcusl and Dale
vanhees71 said:
Argh, somehow my posting got completely distorted. Here it's again:

You can of course express ##\vec{A}## as a functional of ##\vec{B}##, but it's easier in the Coulomb gauge than in the Lorenz gauge. You simply impose ##\vec{\nabla} \cdot \vec{A}=0## (Coulomb-gauge condition) and then you have
$$\vec{\nabla} \times \vec{B} = \vec{\nabla} \times (\vec{\nabla} \times \vec{A})=-\Delta \vec{A},$$
with the solution
$$\vec{A}(t,\vec{x})=\int_{\mathbb{R}^3} \frac{\vec{\nabla}' \times \vec{B}(t,\vec{x}')}{4 \pi |\vec{x}-\vec{x}'|}.$$
Note however that this is useless except for the special case of magnetostatics, because in this case ##\partial_t \vec{E}=0## and thus the Ampere-Maxwell Law simplifies to the Ampere Law,
$$\vec{\nabla} \times \vec{B}(\vec{x})=\vec{j}(\vec{x}),$$
and you simply get Biot-Savart's formula for the Coulomb-gauge vector potential of magnetostatics,
$$\vec{B}(\vec{x})=\int_{\mathbb{R}^3} \mathrm{d}^3 x' \frac{\vec{j}(\vec{x}')}{4 \pi |\vec{x}-\vec{x}'|}.$$
This is, btw also the result of the retarded potential in this case, because since ##\partial_t A^0=0## the Lorenz gauge condition is ##\partial_{\mu} A^{\mu}=\vec{\nabla} \cdot \vec{A}=0## and thus it coincides with the Coulomb gauge in this special case.

So, if ##\mathbf{A}(\mathbf{r},t) = \dfrac{\mu_0}{4\pi} \int \dfrac{\mathbf{J}(\mathbf{r}',t_r)}{|\mathbf{r}-\mathbf{r}'|} \mathrm{d}^3 \mathbf{r}'##

And ##\mathbf{B}(\mathbf{r}, t) = \frac{\mu_0}{4 \pi} \int \left[\frac{\mathbf{J}(\mathbf{r}', t_r)}{|\mathbf{r}-\mathbf{r}'|^3} + \frac{1}{|\mathbf{r}-\mathbf{r}'|^2 c}\frac{\partial \mathbf{J}(\mathbf{r}', t_r)}{\partial t} \right] \times (\mathbf{r}-\mathbf{r}') \,\mathrm{d}^3 \mathbf{r}'##

is it correct to say that $$\vec{A}(t,\vec{x})=\int_{\mathbb{R}^3} \frac{\vec{\nabla}' \times \vec{B}(t,\vec{x}')}{4 \pi |\vec{x}-\vec{x}'|}.$$from your explanation, I'm not sure which parts exactly the Coulomb gauge/magnetostatics/Lorenz guage/retarded time etc. apply to, sorry
 
No in the general case it's not correct the same, because your ##\vec{A}## is in Lorenz gauge and mine is in Coulomb gauge. As I said in this most general case the given integral is useless. The reason for that is that (I'm using Heaviside Lorentz units rather than SI units; so in my case ##\epsilon_0=\mu_0=1##, and ##c## is written explicitly) in this case you have the full Ampere-Maxwell Law, i.e.,
$$\vec{\nabla} \times \vec{B}=\vec{j} +\frac{1}{c} \partial_t \vec{E}.$$
This would make my formula above
$$\vec{A}(t,\vec{x}) = \int_{\mathbb{R}^3} \mathrm{d}^3 x' \frac{1}{4 \pi |\vec{x}-\vec{x}'|} \left [\vec{j}(t,\vec{x}')+\frac{1}{c} \partial_t \vec{E}(t,\vec{x}') \right],$$
and this is a very cumbersome non-local expression when you want to write everything in terms of the sources ##\rho## and ##\vec{j}##.

Only in the magnetostatic case it's of practical use!
 
tade said:
B is supposed to be the curl of A, and A the inverse curl of B
D’oh! Yes, of course. Sorry
 
  • Like
  • Haha
Likes   Reactions: tade and vanhees71
vanhees71 said:
No in the general case it's not correct the same, because your ##\vec{A}## is in Lorenz gauge and mine is in Coulomb gauge. As I said in this most general case the given integral is useless. The reason for that is that (I'm using Heaviside Lorentz units rather than SI units; so in my case ##\epsilon_0=\mu_0=1##, and ##c## is written explicitly) in this case you have the full Ampere-Maxwell Law, i.e.,
$$\vec{\nabla} \times \vec{B}=\vec{j} +\frac{1}{c} \partial_t \vec{E}.$$
This would make my formula above
$$\vec{A}(t,\vec{x}) = \int_{\mathbb{R}^3} \mathrm{d}^3 x' \frac{1}{4 \pi |\vec{x}-\vec{x}'|} \left [\vec{j}(t,\vec{x}')+\frac{1}{c} \partial_t \vec{E}(t,\vec{x}') \right],$$
and this is a very cumbersome non-local expression when you want to write everything in terms of the sources ##\rho## and ##\vec{j}##.

Only in the magnetostatic case it's of practical use!
i see, cool

though could you help me find A in terms of B for my given A and B?

you could also do ∂A/∂t in terms of B if its easier
 
Last edited:
Dale said:
D’oh! Yes, of course. Sorry
D'oh!

On a side note, its really cool how so many physicists and mathematicians have written for the Simpsons, and inserted many formulas into scenes
 
  • Like
Likes   Reactions: Dale
  • #10
tade said:
i see, cool

though could you help me find A in terms of B for my given A and B?

you could also do ∂A/∂t in terms of B if its easier
@vanhees71 from eqn. 35, we can re-arrange:

$$\mathbf{A}+\frac{1}{4 \pi c^{2}} \frac{\partial}{\partial t} \int \frac{[\partial \mathbf{A} / \partial t]}{R} d^{3} r^{\prime}=\frac{1}{4 \pi c^{2}} \frac{\partial}{\partial t} \int \frac{[\boldsymbol{\nabla}^{\prime} \Phi]}{R} d^{3} r^{\prime}+\boldsymbol{\nabla} \times \int \frac{[\mathbf{B}]}{4 \pi R} d^{3} r^{\prime}$$

and then we need to sort it properly for A or ∂A/∂t.
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
825
  • · Replies 1 ·
Replies
1
Views
591
  • · Replies 3 ·
Replies
3
Views
675
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 29 ·
Replies
29
Views
1K
  • · Replies 5 ·
Replies
5
Views
655
  • · Replies 3 ·
Replies
3
Views
714
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K