Exterior and limit points: Quick Question

  • Thread starter Thread starter Buri
  • Start date Start date
  • Tags Tags
    Limit Points
Buri
Messages
271
Reaction score
0
Is the following true?

X\lim(A) = ext(A), where A is a subset of a metric space X.

I think I've found a proof, but I don't feel very secure about it. So could someone just tell me if this is a correct assertion? What I'm trying to prove is that lim(A) is closed.

Thanks
 
Physics news on Phys.org
No, this is false. The exterior of A can be expressed as X minus something, but that "something" is not the set of limit points of A. (As a hint, think about isolated points.)
 
Ahh really? Hmm I'm going to ahve to think about it more then...damnit
 
In R, consider A= [0, 1]\cup \{2\}.
 
Yup, those damn isolated points. Thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top