MHB Extrema of function - What is λ?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Extrema Function
Click For Summary
The discussion revolves around finding the extrema of the function f(x1, x2, x3) = 9x1·x2·x3 under the constraint 2x1 + x2 + x3 = m, where m > 0 and x1, x2, x3 > 0. The calculations lead to the conclusion that the optimal values are x1* = m/6, x2* = m/3, and x3* = m/3, resulting in a maximum value of f* = m^3/6. The second derivative test confirms that this point is indeed a maximum. The discussion also highlights the need to use Lagrange multipliers to find the value of λ, which is not explicitly stated in the problem but is essential for the solution.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the function $f(x_1, x_2, x_3)=9x_1\cdot x_2\cdot x_3$ and we want to find possible extremas under the constraint $2x_1+x_2+x_3=m, m>0$ and $x_1, x_2, x_3>0$.

Then I have to calculate $x_1^{\star}(m), x_2^{\star}(m), \lambda^{\star}(m)$. I have done the following:

\begin{equation*}2x_1+x_2+x_3=m \Rightarrow x_3=m-2x_1-x_2\end{equation*}

\begin{equation*}\tilde{f}(x_1, x_2)=9x_1\cdot x_2\cdot (m-2x_1-x_2)=9mx_1\cdot x_2-18x_1^2\cdot x_2-9x_1\cdot x_2^2\end{equation*}

\begin{align*}\tilde{f}_{x_1}=9m x_2-36x_1\cdot x_2-9 x_2^2 \\ \tilde{f}_{x_1x_1}=-36x_1\cdot x_2 \\ \tilde{f}_{x_2}=9mx_1-18x_1^2-18x_1\cdot x_2 \\ \tilde{f}_{x_2x_2}=-18x_1 \\ \tilde{f}_{x_1x_2}=9m -36x_1-18 x_2\end{align*}

\begin{equation*}\tilde{f}_{x_1}=0 \Rightarrow 9m x_2-36x_1\cdot x_2-9 x_2^2=0\Rightarrow x_2=0 \text{ or } x_2=m-4x_1\end{equation*}

\begin{equation*}\tilde{f}_{x_1}=0 \Rightarrow 9m x_2-36x_1\cdot x_2-9 x_2^2=0\Rightarrow x_2=0 \text{ or } x_2=m-4x\end{equation*}

$x_2$ does not satisfy the constraint, so it is rejected, and therefore it must hold $x_2=m-4x_1$. So, then $x_3=m-2x_1-(m-4x_1)=m-2x_1-m+4x_1=2x_1$.

So, we get the function \begin{equation*}g(x_1)=f(x_1, m-4x_1, 2x_1)=9x_1\cdot (m-4x_1)\cdot 2x_1=18x_1^2\cdot (m-4x_1)\end{equation*}

The first derivative is \begin{equation*}g'(x_1)=36x_1\cdot (m-4x_1)+18x_1^2\cdot (-4)=36mx_1-144x_1^2-72x_1^2=36mx_1-216x_1^2\end{equation*}

and the roots are $x_1=0$, that doesn't satisfy the constraint, and $x_1=\frac{m}{6}$. So, the extremum is at the point \begin{align*}(x_1^{\star}(m), x_2^{\star}(m), x_3^{\star}(m)) & =\left (\frac{m}{6}, m-4\frac{m}{6}, 2\frac{m}{6}\right )=\left (\frac{m}{6}, m-\frac{2}{3}m, \frac{1}{3}m\right )=\left (\frac{m}{6}, \frac{m}{3}, \frac{m}{3}\right )\end{align*}
and it is equal to \begin{equation*}f^{\star}(m)=9\cdot \frac{m}{6}\cdot \frac{m}{3}\cdot \frac{m}{3}=\frac{m^3}{6}\end{equation*}

We have that $\tilde{f}_{x_1x_1}\left (\frac{m}{6}, \frac{m}{3}\right )=-36\frac{m}{6}\frac{m}{3}=-2<0$.
So $\tilde{f}$ has a maximum at $\left (\frac{m}{6}, \frac{m}{3}\right )$.

Therefore $f$ has a maximum at $\left (\frac{m}{6}, \frac{m}{3}, \frac{m}{3}\right )$. is eveything correct? (Wondering) What is $\lambda$ ?

I have to show also that $\frac{df^{\star}}{dm}=\lambda (m)$. (Wondering)
 
Physics news on Phys.org
Ah we have to use Lagrange multipliers, right? (Wondering)
 
I wondered where "\lambda" came from! There is no "\lambda" in the statement of the problem so if the problem asks you to find it then, yes, it is referring to the Lagrange multiplier method.
 

Similar threads

Replies
4
Views
2K
Replies
10
Views
3K
Replies
3
Views
2K
Replies
6
Views
3K
Replies
4
Views
2K
Replies
3
Views
3K