MHB Factorials and Exponent Challenge

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all positive integer solutions $(a,\,b,\,c,\,n)$ of the equation $2^n=a!+b!+c!$.
 
Mathematics news on Phys.org
Without loss of generalty we can have $a>=b>=c$.

Now we get a multiple of power of 2 only when we add multiples of same power of 2

So $a!$ and $b!+c!$ should be muiltiple of same power of 2. and when we add the 2
we shall get multiple of power of 2 say of the form $m2^x$. if m is power of 2 then we are
done.

Now b and c should be multiple of same power of 2 and when we add the same we get a multiple of
higher power and further this should be same as multiple of power of 2 of a.

So we have 2 cases to check

$b = c$ and $a = 2$ or 3 (for reason please see below )-

And $ b = c + 1$ then any a.

As c devides a!+b!+c! so c can not be greater than 2 as sum is power of 2

Now

Put the values b= 1, c = 1 giving a = 2 or 3 as a =4 gives a! divsible by 4 but b!+c! is not

a =2 gives c = 2
a =3 gives c = 3

c= 2, b= 3 gives b! + c! = 8 so we need to check for a = 4 and 5 only as a = 6 or above a! is
divisible by 16 so it is not possible

a = 4 gives 32 power of 2 so n = 5 so solution (4,3,2,7)
a = 5 gives 128 power of 2 so n = 7 so solution (5,3,2,7)

so solution set $(2,1,1,2), (3,1,1,3), (4,3,2,7),(4,3,2,7)$ and any permutation of 1st 3 numbers is each set
 
Last edited:
kaliprasad said:
Without loss of generalty we can have $a>=b>=c$.

Now we get a multiple of power of 2 only when we add multiples of same power of 2

So $a!$ and $b!+c!$ should be muiltiple of same power of 2. and when we add the 2
we shall get multiple of power of 2 say of the form $m2^x$. if m is power of 2 then we are
done.

Now b and c should be multiple of same power of 2 and when we add the same we get a multiple of
higher power and further this should be same as multiple of power of 2 of a.

So we have 2 cases to check

$b = c$ and $a = 2$ or 3 (for reason please see below )-

And $ b = c + 1$ then any a.

As c devides a!+b!+c! so c can not be greater than 2 as sum is power of 2

Now

Put the values b= 1, c = 1 giving a = 2 or 3 as a =4 gives a! divsible by 4 but b!+c! is not

a =2 gives c = 2
a =3 gives c = 3

c= 2, b= 3 gives b! + c! = 8 so we need to check for a = 4 and 5 only as a = 6 or above a! is
divisible by 16 so it is not possible

a = 4 gives 32 power of 2 so n = 5 so solution (4,3,2,7)
a = 5 gives 128 power of 2 so n = 7 so solution (5,3,2,7)

so solution set $(2,1,1,2), (3,1,1,3), (4,3,2,7),(4,3,2,7)$ and any permutation of 1st 3 numbers is each set
above one has mistake in last 3 lines

it should be

a = 4 gives 32 power of 2 so n = 5 so solution (4,3,2,5)
a = 5 gives 128 power of 2 so n = 7 so solution (5,3,2,7)

so solution set $(2,1,1,2), (3,1,1,3), (4,3,2,5),(5,3,2,7)$ and any permutation of 1st 3 numbers is each set
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 66 ·
3
Replies
66
Views
7K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K