MHB Factorials and Exponent Challenge

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all positive integer solutions $(a,\,b,\,c,\,n)$ of the equation $2^n=a!+b!+c!$.
 
Mathematics news on Phys.org
Without loss of generalty we can have $a>=b>=c$.

Now we get a multiple of power of 2 only when we add multiples of same power of 2

So $a!$ and $b!+c!$ should be muiltiple of same power of 2. and when we add the 2
we shall get multiple of power of 2 say of the form $m2^x$. if m is power of 2 then we are
done.

Now b and c should be multiple of same power of 2 and when we add the same we get a multiple of
higher power and further this should be same as multiple of power of 2 of a.

So we have 2 cases to check

$b = c$ and $a = 2$ or 3 (for reason please see below )-

And $ b = c + 1$ then any a.

As c devides a!+b!+c! so c can not be greater than 2 as sum is power of 2

Now

Put the values b= 1, c = 1 giving a = 2 or 3 as a =4 gives a! divsible by 4 but b!+c! is not

a =2 gives c = 2
a =3 gives c = 3

c= 2, b= 3 gives b! + c! = 8 so we need to check for a = 4 and 5 only as a = 6 or above a! is
divisible by 16 so it is not possible

a = 4 gives 32 power of 2 so n = 5 so solution (4,3,2,7)
a = 5 gives 128 power of 2 so n = 7 so solution (5,3,2,7)

so solution set $(2,1,1,2), (3,1,1,3), (4,3,2,7),(4,3,2,7)$ and any permutation of 1st 3 numbers is each set
 
Last edited:
kaliprasad said:
Without loss of generalty we can have $a>=b>=c$.

Now we get a multiple of power of 2 only when we add multiples of same power of 2

So $a!$ and $b!+c!$ should be muiltiple of same power of 2. and when we add the 2
we shall get multiple of power of 2 say of the form $m2^x$. if m is power of 2 then we are
done.

Now b and c should be multiple of same power of 2 and when we add the same we get a multiple of
higher power and further this should be same as multiple of power of 2 of a.

So we have 2 cases to check

$b = c$ and $a = 2$ or 3 (for reason please see below )-

And $ b = c + 1$ then any a.

As c devides a!+b!+c! so c can not be greater than 2 as sum is power of 2

Now

Put the values b= 1, c = 1 giving a = 2 or 3 as a =4 gives a! divsible by 4 but b!+c! is not

a =2 gives c = 2
a =3 gives c = 3

c= 2, b= 3 gives b! + c! = 8 so we need to check for a = 4 and 5 only as a = 6 or above a! is
divisible by 16 so it is not possible

a = 4 gives 32 power of 2 so n = 5 so solution (4,3,2,7)
a = 5 gives 128 power of 2 so n = 7 so solution (5,3,2,7)

so solution set $(2,1,1,2), (3,1,1,3), (4,3,2,7),(4,3,2,7)$ and any permutation of 1st 3 numbers is each set
above one has mistake in last 3 lines

it should be

a = 4 gives 32 power of 2 so n = 5 so solution (4,3,2,5)
a = 5 gives 128 power of 2 so n = 7 so solution (5,3,2,7)

so solution set $(2,1,1,2), (3,1,1,3), (4,3,2,5),(5,3,2,7)$ and any permutation of 1st 3 numbers is each set
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top