MHB Factoring x^2 + y^2 | Sophie Germain's Identity

  • Thread starter Thread starter Dethrone
  • Start date Start date
  • Tags Tags
    Factoring
AI Thread Summary
Sophie Germain's Identity allows for the factorization of sums of squares when 2AB is a perfect square, leading to a clean factorization. However, it is noted that while one can factor expressions like x^2 + y^2 using this identity, the practicality of such factorizations is questioned, especially when they involve irrational numbers. An example is provided where 25 can be factored into irrational components, which is less useful than its rational factorization. The discussion also touches on factoring y^4 + y^2 + 1, with suggestions to complete the square and rearrange the polynomial to find a more straightforward factorization. Ultimately, the conversation highlights the balance between mathematical curiosity and practical application in factorization techniques.
Dethrone
Messages
716
Reaction score
0
I came across an interesting website today, which stated that you can factor sums of squares IF 2AB is a perfect square known as the Sophie Germain’s Identity. Below is the website for your reference.

http://oakroadsystems.com/math/sumsqr.htm

I realize that if it is a perfect square, then the factorization would be nice and clean, but could you not do it also for non-perfect squares?

Example: factor $x^2 + y^2$

$A=x$
$B=y$
$2AB=2xy$

Therefore, $(x+y+\sqrt{2xy}) (x+y-\sqrt{2xy})$. If I were to expand this, I would get $x^2 + y^2$. Is this correct?
 
Last edited:
Mathematics news on Phys.org
Rido12 said:
I came across an interesting website today, which stated that you can factor sums of squares IF 2AB is a perfect square known as the Sophie Germain’s Identity. Below is the website for your reference.

http://oakroadsystems.com/math/sumsqr.htm

I realize that if it is a perfect square, then the factorization would be nice and clean, but could you not do it also for non-perfect squares?

Example: factor x^2 + y^2

A=x
B=y
2AB=2xy

Therefore, (x+y+sqrt(2xy)) (x+y-sqrt(2xy)). If I were to expand this, I would get x^2 + y^2. Is this correct?

Yes, that's true. The real question is: how useful is it?

For example, we can factor 25 as:

$(7 + \sqrt{24})(7 - \sqrt{24})$, but this factorization is not very easy to work with. This factors the rational number 25 into two irrational numbers, whereas the factorization:

$25 = 5\ast 5$

is much more practical.

So this raises the question: when is $\sqrt{2xy}$ rational?
 
You're right, it's not at all useful, just thought it was neat. I don't think sqrt(2xy) is rational, since sqrt(2) is an irrational number? Assuming that xy = 1.
 
Rido12 said:
You're right, it's not at all useful, just thought it was neat. I don't think sqrt(2xy) is rational, since sqrt(2) is an irrational number? Assuming that xy = 1.

It is useful. One should realize that $x^2 + y^2$ is not the expression but the form

for exampe $a^4 + 4b^4$ is $x^2+y^2$ where $x=a^2$ and $y = 2b^2$ then $2xy= 4a^2b^2$ which is a perfect square

this can be utilized to factor
 
Ah, I see. This is unrelated to the original topic, but how may I go around factoring y^4 + y^2 + 1?

I know it is (y^2 + y + 1) (y^2 - y + 1), but not sure how to get there.

The only thing I notice is that there is some kind of difference of squares going around...
(y^2 + 1 + y) (y^2 + 1 - y)
= (y^2 + 1)^2 - y^2
= y^4 + 2y^2 + 1 - y^2

Is there an easier way to factor it, other than to rearrange the polynomial like what I just did?
 
Last edited:
Rido12 said:
Ah, I see. This is unrelated to the original topic, but how may I go around factoring y^4 + y^2 + 1?

I know it is (y^2 + y + 1) (y^2 - y + 1), but not sure how to get there.

Let $\displaystyle \begin{align*} x = y^2 \end{align*}$ to get $\displaystyle \begin{align*} x^2 + x + 1 \end{align*}$ and then complete the square.
 
Ah, completing the square. Before I asked the question, I got to x^2 + x + 1, but I didn't know how to further factor it. Thanks!

EDIT: Wait... x^2 + x + 1 = (x + 1/2)^2 + 3/4...how do I further factor?
 
Last edited:
Still having a bit of trouble, actually.

If we let y^2 = x
then...
x^2 + x + 1, completing the square gives me (x+1/2)^2 + 3/4

How do I get (y^2 + y + 1) (y^2 - y + 1) from that?
 

Similar threads

Back
Top