MHB Factorization of Polynomials Over a Field - Nicholson Example 10, Page 215

Click For Summary
The discussion centers on Example 10 from W. Keith Nicholson's "Introduction to Abstract Algebra," specifically regarding the factorization of the polynomial \( f(x) = x^4 + x + 1 \) over the field \( \mathbb{Z}_2 \). The polynomial is noted to have no roots in \( \mathbb{Z}_2 \), which leads to the conclusion that it may not be irreducible. However, a clarification is made that the statement about irreducibility is conditional, emphasizing the need for careful reading. Participants acknowledge the importance of understanding the implications of polynomial roots in relation to irreducibility. The conversation highlights the nuances of polynomial factorization in abstract algebra.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading W. Keith Nicholson's book: Introduction to Abstract Algebra (Third Edition) ...

I am focused on Section 4.2:Factorization of Polynomials over a Filed.

I need some help with Example 10 on page 215 ...

The relevant text from Nicholson's book is as follows:View attachment 4591In the above text, we read the following:

" ... ... Reduction modulo $$2$$ gives $$\overline{f(x)} = x^4 + x + 1$$ in $$\mathbb{Z}_2 [x]$$. This polynomial has no roots in $$\mathbb{Z}_2$$, so it fails to be irreducible ... ... "Can someone please explain the reasoning behind the statement that since the polynomial has no roots in $$\mathbb{Z}_2$$ then it fails to be irreducible?

Hope someone can help ... ...

Peter
 
Physics news on Phys.org
Hi Peter,

You have missed an IF it fails to be irreducible...
 
Fallen Angel said:
Hi Peter,

You have missed an IF it fails to be irreducible...
Thanks Fallen Angel ... you are quite right ...

hmm ... must read more carefully ... very careless of me :(

Thanks again for your help ...

Peter
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
1
Views
2K
  • · Replies 24 ·
Replies
24
Views
5K