DiracPool said:
K^2 basically addressed what I asking. Couple questions. 1) Your value for the angular momentum is the total momentum, I was referring specifically to the spin about a particles central axis, not an orbital component, so wouldn’t we just be talking about the intrinsic spin component? Even, so, at 1/2h-bar, ω comes out to the exact same value, to three digits at least (3.156), so that point may be moot anyway, at least for the electron.
My second point/question relates to a more general interpretation. My initial example was the spin of a proton. I used that as an example because we classify the proton as an object with an actual size to it, whereas the electron is a bit tenuous. In any case, is there a value for the gross or total momentum or especially the rotational spin momentum of the proton? This example would serve as a better model, especially because it may address a recent hot topic in particle physics, the proton spin CRISIS!
http://en.wikipedia.org/wiki/Proton_spin_crisis
Recent? This makes me feel younger, thank you! I have been working on the Nucleon Spin Problem for 20 years. I even “SEE” it in my dreams. But I can not see the connection between your original question and the confirmed experimental fact that the Nucleon constituents contribute only 1/3 to the spin of the Nucleon. This is the “spin crisis”. If you are interested in this problem, start by looking at (my teacher then research supervisor) text
E. Leader, “Spin in Particle Physics”, Cambridge University Press (2001)
The source of the problem can be found in:
European Muon Collaboration: J. Ashman et al., Phys. Lett. B 206, 364 (1988)
EMC Collaboration : J. Aschman et al., Nucl. Phys. B 328, 1 (1989).
COMPASS Collaboration : E. S. Ageev et al., Phys. Lett. B 633, 25 (2006).
PHENIX Collaboration : K. Boyle et al, AIP Conf. Proc. 842, 351 (2006).
STAR Collaboration : J. Kiryluk et al., AIP Conf. Proc. 842, 327 (2006).
STAR Collaboration : R. Fatemi et al., nucl-ex/0606007 (2006).
COMPASS Collaboration : E. S. Ageev et al., Phys. Lett. B 612, 154 (2005)
COMPASS Collaboration : V. Yu. Alexakhin et al., Phys. Lett. B 647, 8 (2007).
HERMES Collaboration : A. Airapetian et al., Phys. Rev. D 75, 012007 (2007).
HERMES Collaboration : Ellinghaus F et al., Eur. J. Phys. C 46 729 (2006).
HERMES Collaboration : Ye Z et al., arXiv : hep-ex/0606061 (2006).
JLab Hall A Collaboration : Mazouz M et al., Phys. Rev. Lett. 99 242501 (2007).
LHPC Collaboration : Ph. H¨agler et al., Phys. Rev. D 77, 094502 (2008).
LHPC Collaboration : J.D. Bratt et al., arXiv : 1001.3620 [hep-ph].
For more, look at:
M. Anselmino and E. Leader, Z. Phys. C 41, 239 (1988)
B.L.G. Bakker, E. Leader, and T.L. Trueman, Phys. Rev. D 70, 114001 (2004).
M. Anselmino, A. Efremov, and E. Leader, Phys. Rep. 261, 1 (1995).
R. L. Jaffe and X. Ji, Phys. Rev. Letters 67, 552 (1991)
R. L. Jaffe and A. Manohar, Nucl. Phys. B 337, 509 (1990)
A.V. Manohar, Phys. Rev. Lett. 65, 2511 (1990).
G. M. Shore and B. E. White, Nucl. Phys. B 581, 409 (2000)
X. Ji, J. Tang, and P. Hoodbhoy, Phys. Rev. Letters 76, 740 (1996)
X. Ji, Phys. Rev. Lett. 78, 610 (1997).
X. Ji, J. Phys. G 24, 1181 (1998).
X. Ji, Phys. Rev. D 58, 056003 (1998).
M. Wakamatsu and H. Tsujimoto, Phys. Rev. D 71, 074001 (2005).
M. Wakamatsu and Y. Nakakoji, Phys. Rev. D 74, 054006 (2006).
M. Wakamatsu and Y. Nakakoji, Phys. Rev. D 77, 074011 (2008).
M. Wakamatsu, Phys. Rev. D 81, 114010 (2010).
M. Wakamatsu, Eur. Phys. J. A 44, 297 (2010).
S. J. Brodsky et al, Nucl.Phys. B593, 311 (2001)
P. J. Mulders and R. D. Tangerman, Nucl. Phys. B 461, 197 (1996); erratum Nucl. Phys. B
484, 538 (1997)
V. Barone, A. Drago, and P. G. Ratcliffe. Phys. Rep. 359, 1 (2002)
D. Boer, and P. J. Mulders, Phys. Rev. D 57, 5780 (1998)
A. M. Kotzinian and P. J. Mulders, Phys. Lett. B 406, 373 (1997)
X. S. Chen, X. F. L¨u, W. M. Sun, F. Wang, and T. Goldman, Phys. Rev. Lett. 100, 232002 (2008).
X. S. Chen, W. M. Sun, X. F. L¨u, F. Wang, and T. Goldman, Phys. Rev. Lett. 103, 062001 (2009).
Y.M. Cho, Mo-Lin Ge, and Pengming Zhang, arXiv : 1010.1080 [nucl-th] (2010).
C.W. Wong, Fan Wang, W.M. Sun, and X.F. L¨u, arXiv : 1010.4336 [hep-ph] (2010).
E.J. Konopinski, Am. J. Phys. 46(5), 499 (1978).
S.V. Bashinsky and R.L. Jaffe, Nucl. Phys. B 536, 303 (1999)
G.M. Shore and B.E. White, Nucl. Phys. B 581, 409 (2000).
G. Altarelli and G.G. Ross, Phys. Lett. B 212, 391 (1988).
R.D. Carlitz, J.C. Collins, and A.H. Mueller, Phys. Lett. B 214, 229 (1988).
A.V. Efremov and O.V. Teryaev, JINR Dubna preprint JINR EZ-88-297 (1988).
B. Lampe and E. Reya, Phys. Rep. 332, 1 (2000).
A.V. Manohar, Phys. Rev. Lett. 66, 1663 (1991).
I.I. Balitsky and V.M. Braun, Phys. Lett. B 267, 405 (1991).
M. Burkardt and H. BC, Phys. Rev. D 79, 071501 (2009).
F. Myhrer and A.W. Thomas, Phys. Rev. D 38, 1633 (1988).
A.W. Thomas, Phys. Rev. Lett. 101, 102003 (2008).
The whole problem rest on the fact that there is no satisfactory gauge invariant decomposition (spin + orbital) of the angular momentum of quarks and gluons in nucleon state.
Sam