MHB Field Extensions, Polynomial Rings and Eisenstein's Criterion

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
In Dummit and Foote Chapter 13: Field Theory, the authors give several examples of field extensions on page 515 - see attached.

In example (3) we read (see attached)

" (3) Take F = \mathbb{Q} and p(x) = x^2 - 2, irreducible over \mathbb{Q} by Eisenstein's Criterion, for example"

Now Eisenstein's Criterion (see other attachment - Proposition 13 and Corollary14) require the polynomial to be in R[x] where R s an integral domain.

In example (3) on page 515 of D&F we are dealing with a field, specifically \mathbb{Q}.

My problem is, then, how does Eisenstein's Criterion apply?

Can anyone please clarify this situation for me?

Peter

[This has also been posted on MHF]
 
Physics news on Phys.org
The sub-ring $\Bbb Z$ of $\Bbb Q$ is an integral domain...

Also, any field is automatically an integral domain. You might wish to commit to memory the following chain of inclusions:

Fields < Euclidean Domains < PID's < UFD's < Integral domains < Commutative rings.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top