MHB Field Extensions, Polynomial Rings and Eisenstein's Criterion

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
In Dummit and Foote Chapter 13: Field Theory, the authors give several examples of field extensions on page 515 - see attached.

In example (3) we read (see attached)

" (3) Take F = \mathbb{Q} and p(x) = x^2 - 2, irreducible over \mathbb{Q} by Eisenstein's Criterion, for example"

Now Eisenstein's Criterion (see other attachment - Proposition 13 and Corollary14) require the polynomial to be in R[x] where R s an integral domain.

In example (3) on page 515 of D&F we are dealing with a field, specifically \mathbb{Q}.

My problem is, then, how does Eisenstein's Criterion apply?

Can anyone please clarify this situation for me?

Peter

[This has also been posted on MHF]
 
Physics news on Phys.org
The sub-ring $\Bbb Z$ of $\Bbb Q$ is an integral domain...

Also, any field is automatically an integral domain. You might wish to commit to memory the following chain of inclusions:

Fields < Euclidean Domains < PID's < UFD's < Integral domains < Commutative rings.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...