Figuring out compounding interest

  • Context: Undergrad 
  • Thread starter Thread starter drymetal
  • Start date Start date
  • Tags Tags
    Interest
Click For Summary
SUMMARY

The discussion focuses on calculating compound interest with regular contributions using a mathematical formula. The user initially used Excel to compute the future value of an investment of $100 with an 8% annual return, resulting in a discrepancy between their manual calculation and Excel's output. The correct formula for calculating the future value of an investment with regular contributions is derived using a power series approach, leading to the formula: 100 x (1.08^19 - 1.08) / (1.08 - 1), which yields approximately $4,044.63. The user seeks to understand the underlying principles of this calculation for future applications.

PREREQUISITES
  • Understanding of compound interest principles
  • Familiarity with mathematical series and formulas
  • Basic knowledge of Excel for financial calculations
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Research the formula for future value of an annuity in finance
  • Learn about the differences between annual, monthly, and daily compounding
  • Explore Excel functions for financial calculations, such as FV and PMT
  • Study power series and their applications in financial mathematics
USEFUL FOR

Investors, financial analysts, students of finance, and anyone interested in understanding compound interest calculations and investment growth over time.

drymetal
Messages
7
Reaction score
0
I talk to people a lot about the power in investing their money. I've always relied on Excel to figure out things though and I'm getting sick of it. So I figured there was a way to do it simpler with math than making gigantic lists that detailed every month and year a person invests money.

So, let's say I have 10,000 and will expect an 8% yearly return on it. I figured out a formula or whatever that will give me the correct answer quickly:

10,000 * 1.08^n

Or say it was for 20 years: 10,000 * 1.08^20

This is great. But it doesn't do a whole lot because people generally contribute money regularly to their investments. Which gets me to my question...


I wanted to keep it simple. Let's say a person has $100. They invest it and can expect to earn 8% every year. Additionally, they add an additional $100 every year. The answer I got in Excel was $4,044.63 after 18 years.

After countless months beating my head against a wall and talking to my cat, I came up with this:

100(1+.08)18+100[((1+.08)18-1)/.08]

However, that equals $4,144.63. And to be honest, I don't remember how the heck I came up with that crazy looking equation. :(

But, it is giving me the wrong answer! By $100! I must be doing something right. lol

Can anyone help me simplify and understand this? Thanks!
 
Physics news on Phys.org
Your formula is correct, the difference is that you are assuming that the person invests $10,000 plus an additional $100 on day one. The formula that excel uses is starting the yearly $100 investments at the end of the first year.
 
I don't understand. Is there just a regular formula with x's and y's and all those happy letters that does this? You know, where I can just plug the numbers in. The formula above I forgot how I came up with it.

The answer isn't as important to me as understanding it. Not that I don't want an answer - I do. But I need to understand it. Understanding it is paramount to me. I hope by learning the why - I can figure out equations on my own easier in the future.
 
If the yearly investment and the interest rate are fixed, you could use power series to solve this:

let a = 1.08

you want to calculate the sum a^18 + a^17 + ... + a^1

multiply by a = a^19 + a^18 + ... a^2

subtract the original equation:

Code:
 a^19 + a^18 + ... + a^2
            a^18 + ... + a^2 + a^1
--------------------------------
 a^19                            - a^1

So the result is (a - 1)(a^18 + a^17 + ... + a^1) = (a^19 - a^1)

To get the original number divide by (a-1)

(a^18 + a^17 + ... + a^1) = (a^19 - a^1)/(a-1)

For your case you have 100 x (1.08^19 - 1.08) / (1.08 - 1) ~= 4044.6263239

Although this is nice for doing algebra, it's probably better to use a spread sheet, to handle variations in monthly deposits, changes in interest rates, and also allowing for interest that is compounded monthly (or daily) instead of yearly.
 
Last edited:

Similar threads

  • · Replies 45 ·
2
Replies
45
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 2 ·
Replies
2
Views
7K
  • · Replies 9 ·
Replies
9
Views
2K