MHB Find $a_{2017}$: Sequence Challenge

Click For Summary
The sequence challenge involves finding the value of \( a_{2017} \) given the recurrence relation \( \frac{a_n}{n+1} = \frac{\sum_{i=1}^{n-1} a_i}{n-1} \) with \( a_1 = 1 \). Participants discuss methods to derive a general formula for \( a_n \) based on the provided equation. The conversation highlights the importance of manipulating the equation to express \( a_n \) in terms of previous terms. Several users share their approaches and calculations, ultimately aiming to compute \( a_{2017} \). The challenge emphasizes the analytical skills required to solve recursive sequences.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find $a_{2017}$, if $a_1 = 1$, and $$\frac{a_n}{n+1}=\frac{\sum_{i=1}^{n-1}a_i}{n-1}.$$
 
Mathematics news on Phys.org
lfdahl said:
Find $a_{2017}$, if $a_1 = 1$, and $$\frac{a_n}{n+1}=\frac{\sum_{i=1}^{n-1}a_i}{n-1}---(1).$$

$a_{2017}=1009\times 2^{2016}$ correct ?
 
Last edited:
Albert said:
$a_{2017}=1009\times 2^{2016}$ correct ?

Yes, that´s correct!
 
my solution:
from(1) we have:
$a_1=1,a_2=3,a_3=8,a_4=20,a_5=48,------$
so we may set :$a_n=2a_{n-1}+2^{n-2}---(2)$
or $a_n-a_{n-1}=a_{n-1}+2^{n-2}--(3)$
and $S_{n-1}=a_n(\dfrac{n-1}{n+1})---(4)$
so $$a_{2017}-{\sum_{i=1}^{2016}a_i}=2^{2016}$$
or $a_{2017}-S_{2016}=2^{2016}$
from $(3)(4)$$a_{2017}=1009\times 2^{2016}$
 
Albert said:
my solution:
from(1) we have:
$a_1=1,a_2=3,a_3=8,a_4=20,a_5=48,------$
so we may set :$a_n=2a_{n-1}+2^{n-2}---(2)$
or $a_n-a_{n-1}=a_{n-1}+2^{n-2}--(3)$
and $S_{n-1}=a_n(\dfrac{n-1}{n+1})---(4)$
so $$a_{2017}-{\sum_{i=1}^{2016}a_i}=2^{2016}$$
or $a_{2017}-S_{2016}=2^{2016}$
from $(3)(4)$$a_{2017}=1009\times 2^{2016}$

Good job, Albert! Thankyou for your participation!
 

Similar threads

Replies
1
Views
1K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
15
Views
3K
Replies
3
Views
1K
Replies
1
Views
1K