Find $a_{2017}$: Sequence Challenge

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Challenge Sequence
Click For Summary
SUMMARY

The sequence defined by the recurrence relation $$\frac{a_n}{n+1}=\frac{\sum_{i=1}^{n-1}a_i}{n-1}$$ with the initial condition $a_1 = 1$ leads to the calculation of $a_{2017}$. The discussion highlights the importance of understanding the relationship between the terms of the sequence and the summation of previous terms. Participants confirmed the validity of the approach to derive the specific term $a_{2017}$ through iterative calculations based on the established formula.

PREREQUISITES
  • Understanding of recurrence relations
  • Familiarity with summation notation
  • Basic knowledge of sequences and series
  • Ability to perform mathematical induction
NEXT STEPS
  • Explore advanced techniques in solving recurrence relations
  • Learn about generating functions for sequences
  • Investigate mathematical induction proofs
  • Study the properties of arithmetic and geometric sequences
USEFUL FOR

Mathematics enthusiasts, students studying sequences, and educators looking for examples of recurrence relations in problem-solving contexts.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find $a_{2017}$, if $a_1 = 1$, and $$\frac{a_n}{n+1}=\frac{\sum_{i=1}^{n-1}a_i}{n-1}.$$
 
Physics news on Phys.org
lfdahl said:
Find $a_{2017}$, if $a_1 = 1$, and $$\frac{a_n}{n+1}=\frac{\sum_{i=1}^{n-1}a_i}{n-1}---(1).$$

$a_{2017}=1009\times 2^{2016}$ correct ?
 
Last edited:
Albert said:
$a_{2017}=1009\times 2^{2016}$ correct ?

Yes, that´s correct!
 
my solution:
from(1) we have:
$a_1=1,a_2=3,a_3=8,a_4=20,a_5=48,------$
so we may set :$a_n=2a_{n-1}+2^{n-2}---(2)$
or $a_n-a_{n-1}=a_{n-1}+2^{n-2}--(3)$
and $S_{n-1}=a_n(\dfrac{n-1}{n+1})---(4)$
so $$a_{2017}-{\sum_{i=1}^{2016}a_i}=2^{2016}$$
or $a_{2017}-S_{2016}=2^{2016}$
from $(3)(4)$$a_{2017}=1009\times 2^{2016}$
 
Albert said:
my solution:
from(1) we have:
$a_1=1,a_2=3,a_3=8,a_4=20,a_5=48,------$
so we may set :$a_n=2a_{n-1}+2^{n-2}---(2)$
or $a_n-a_{n-1}=a_{n-1}+2^{n-2}--(3)$
and $S_{n-1}=a_n(\dfrac{n-1}{n+1})---(4)$
so $$a_{2017}-{\sum_{i=1}^{2016}a_i}=2^{2016}$$
or $a_{2017}-S_{2016}=2^{2016}$
from $(3)(4)$$a_{2017}=1009\times 2^{2016}$

Good job, Albert! Thankyou for your participation!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
829
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K