MHB Find all positive integer solutions of the given equation.

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer Positive
AI Thread Summary
The discussion revolves around finding positive integer solutions for the equation $4x^3-12x^2+5x-10y+36y^2-18y^3+4x^2y+6xy-15xy^2=0$. Participants share methods for factoring the polynomial, with one user noting a pattern with solutions of the form $x = 2y$. They attempted to divide the polynomial by $(x - 2y)$, leading to a quadratic in $(2x + 3y)$ that was easier to factor. The conversation emphasizes the importance of analyzing coefficients and patterns in the equation to derive solutions systematically. Overall, the focus is on collaborative problem-solving and exploring various approaches to factorization.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all positive integer solutions of the equation $4x^3-12x^2+5x-10y+36y^2-18y^3+4x^2y+6xy-15xy^2=0$.
 
Mathematics news on Phys.org
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(padding above to hide spoiler from "New Forum Posts")

This expression factorises to:

$$(x-2 y) (2 x+3 y-5) (2 x+3 y-1) = 0$$
Which gives us the following conditions:

$$x = 2y ~ ~ ~ ~ \text{and} ~ ~ ~ ~ 2x + 3y = 5 ~ ~ ~ ~ \text{and} ~ ~ ~ ~ 2x + 3y = 1$$
Note that since we only want positive integer solutions, the second condition yields only $(1, 1)$ and the last one clearly cannot be satisfied in $\mathbb{N}$, therefore the set of solutions $(x, y)$ over the positive integers, is in fact equal to the following:​
$$\{ (2n, n) ~ | ~ n \in \mathbb{N} \} ~ \cup ~ \{ (1, 1) \} ~ ~ = ~ ~ \{ (1, 1), \, (2, 1), \, (4, 2), \, (6, 3), \, \dots \}$$
You really have to see the factorisation, though.
 
Hi Bacterius,

Thanks for participating in this problem.

I've come up with the same product of three factors as another way to express the given equation but I'm really more interested in the method that you used to find those factors...:p
 
anemone said:
Hi Bacterius,

Thanks for participating in this problem.

I've come up with the same product of three factors as another way to express the given equation but I'm really more interested in the method that you used to find those factors...:p

I noticed the pattern with the $x = 2y$ solutions, and tried to divide the polynomial by $(x - 2y)$, and after some rearranging I got a quadratic in $(2x + 3y)$, which wasn't too hard to factor.

Without having an "insight" into the solutions, I think it would still be doable by analyzing the coefficients...​
 
Bacterius said:
I noticed the pattern with the $x = 2y$ solutions, and tried to divide the polynomial by $(x - 2y)$, and after some rearranging I got a quadratic in $(2x + 3y)$, which wasn't too hard to factor.

Without having an "insight" into the solutions, I think it would still be doable by analyzing the coefficients...​

I found this problem recently and as this is not solved to the extent of factorization I thought I can give it a try

We put the number in descreasing order of power of x

4x^3−12x^2 +4x^2y +5x+6xy−15xy^2−10y+36y^2−18y^3
Now factor the part independent of x
= 4x^3−12x^2 +4x^2y +5x+6xy−15xy^2−2y(5-18y+9y^2)
= 4x^3−12x^2 +4x^2y +5x+6xy−15xy^2−2y(3y-5)(3y-1)
Now I multiply by 2 and put 2x = z to get coefficient of x^3 as 1
= ½(8x^3−24x^2 +8x^2y +10x+12xy−30xy^2−4y(3y-5)(3y-1)
= 1/2(z^3−6z^2 +2 z^2y +5z+6zy−15zy^2−4y(3y-5)(3y-1)
= 1/2(z^3−z^2(6-2y) +z(5+6y+15y^2) −4y(3y-5)(3y-1)

Now we need to split - 4y(3y-5)(3y-1)into3 parts that the sum is 6- 2y

They are-( 3y-5),- (3y-1) , 4y ( it is easy to do so as 5 + 1 = 6

Now to check The coefficient of z is (5+6y+15y^2)

We see that – 4y(3y-5) – 4y(3y-1) + (3y-1) (3y-5) = -15y^2 + 6y + 5 which is true

So we get ½(( z- 4y) ( z+ 3y-5)(z+ 3y-1)) or (x-2y)(2x + 3y-5)(2x+3y-1))
I hope it helps in factoring systematically
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top