MHB Find all positive integers a and b

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integers Positive
Click For Summary
The discussion focuses on finding all positive integers \( a \) and \( b \) that satisfy the equation \( a(a+2)(a+8)=3^b \). Participants share their attempts at solving the equation, highlighting the complexity of the problem. One user acknowledges a mistake in their initial approach and expresses gratitude for a correction provided by another member. The conversation emphasizes the importance of collaboration and correction in problem-solving. The thread illustrates the challenges of working with exponential equations in number theory.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all positive integers $a$ and $b$ such that $a(a+2)(a+8)=3^b$.
 
Mathematics news on Phys.org
My solution (attempt):

\[(*). \;\;\;\;a(a+2)(a+8)=3^b, \: \: \: \: a,b \in \mathbb{N}\]

One obvious solution pops up for the pair: $(a,b) = (1,3)$.

(*) requires each of the three factors on the LHS to be divisible by 3:

\[(1). \;\;\;a\equiv 0\: \: \: (mod \: \: 3)\\\\ (2). \;\;\; a+2\equiv 0\: \: \: (mod \: \: 3)\\\\ (3).\; \;\; a+8\equiv 0\: \: \: (mod \: \: 3)\]

$(1)$ implies that $a = n\cdot 3$, $n \in \mathbb{N}$. This immediately excludes $(2)$ and $(3)$ for all $n$.

Hence, $a = 1$ and $b = 3$ is the only solution.
 
all of a , a + 2 and a + 8 have to be power of 3( power 0 included)

a cannot pe power of 3 >= 1 or >= $3^1$ then a+ 2 and a+ 8 are not dvisible by 3

so check a = $3^0$ = 1

that give a + 2 = 3 and a + 8 = 9 both power of 3

so we get $a(a+2)(a+ 8) = 3^ 3$

so a = 1 and b= 3 is the only solution
 
My mistake. I'm sorry. Thankyou kaliprasad for your correction!

\[(*). \;\;\;\;a(a+2)(a+8)=3^b, \: \: \: \: a,b \in \mathbb{N}\]

One obvious solution pops up for the pair: $(a,b) = (1,3)$.

(*) requires each of the three factors on the LHS to be powers in 3:

$a = 3^n$, $n \in \mathbb{N}$. This immediately excludes $a+2$ and $a+8$ for all $n$.

Hence, $a = 1$ and $b = 3$ is the only solution.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
2K