Find all possible values of |x+y+z|

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on finding all possible values of |x+y+z| for complex numbers x, y, z with |x|=|y|=|z|=1, under the condition that (x^2/y*z) + (y^2/z*x) + (z^2/x*y) = 1. The equation simplifies to x^3 + y^3 + z^3 = xyz, leading to the conclusion that the values of |x+y+z| are √3+1 and √3-1. The product of these values is 2, confirmed by the analysis of the cube roots of unity and their geometric properties on the unit circle.

PREREQUISITES
  • Understanding of complex numbers and their properties
  • Familiarity with the unit circle in the complex plane
  • Knowledge of cube roots of unity
  • Basic algebraic manipulation of complex equations
NEXT STEPS
  • Study the properties of complex numbers on the unit circle
  • Learn about cube roots of unity and their applications
  • Explore geometric interpretations of complex equations
  • Investigate the implications of symmetry in complex functions
USEFUL FOR

Mathematicians, students studying complex analysis, and anyone interested in algebraic geometry and the properties of complex numbers.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y,\,z$ be complex numbers such that $|x|=|y|=|z|=1$.

If $\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}=1$, find the product of all possible values of $|x+y+z|$.
 
Mathematics news on Phys.org
anemone said:
Let $x,\,y,\,z$ be complex numbers such that $|x|=|y|=|z|=1$.

If $\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}=1$, find the product of all possible values of $|x+y+z|$.
[sp]Write the equation as $x^3 + y^3 + z^3 = xyz$. If $\lambda$ is any complex number with $|\lambda|=1$ then the equation is unaltered if we replace $x,y,z$ by $\lambda x,\lambda y,\lambda z$, and $|x+y+z|$ is then also unaltered. So choose $\lambda$ to be a cube root of $(xyz)^{-1}$. The equation then becomes $x^3 + y^3 + z^3 = xyz = 1.$

Now let $a=x^3$, $b=y^3$, $c=z^3$. Then $|a| = |b| = |c| = 1$ and $a+b+c = abc = 1$, from which $\frac12(a+b) = \frac12(1-c).$ So the points $1,a,b,c$ all lie on the unit circle, and the midpoint of the chord from $a$ to $b$ is the same as the midpoint of the chord from $1$ to $-c$. But the midpoint of a chord of a circle uniquely determines its endpoints. So $a$ and $b$ must be the same as $1$ and $-c$. Therefore the three points are $\{1,c,-c\}.$ But their product is $1$, so that $-c^2 = 1$, $c = \pm i.$

Therefore $x,y,z$ are cube roots of $1,i,-i$. That leaves only finitely many possible choices for $x,y,z$. You can check that all of them are obtained (by rotation of the circle) from two basic solutions $\{1,\omega,\omega^{-1}\}$ and $\{1,\omega^5,\omega^{-5}\}$, where $\omega = e^{i\pi/6}$. The corresponding values of $|x+y+z|$ are $\sqrt3+1$ and $\sqrt3-1$, with product $(\sqrt3+1)( \sqrt3-1) = \boxed2.$[/sp]
 
Opalg said:
[sp]Write the equation as $x^3 + y^3 + z^3 = xyz$. If $\lambda$ is any complex number with $|\lambda|=1$ then the equation is unaltered if we replace $x,y,z$ by $\lambda x,\lambda y,\lambda z$, and $|x+y+z|$ is then also unaltered. So choose $\lambda$ to be a cube root of $(xyz)^{-1}$. The equation then becomes $x^3 + y^3 + z^3 = xyz = 1.$

Now let $a=x^3$, $b=y^3$, $c=z^3$. Then $|a| = |b| = |c| = 1$ and $a+b+c = abc = 1$, from which $\frac12(a+b) = \frac12(1-c).$ So the points $1,a,b,c$ all lie on the unit circle, and the midpoint of the chord from $a$ to $b$ is the same as the midpoint of the chord from $1$ to $-c$. But the midpoint of a chord of a circle uniquely determines its endpoints. So $a$ and $b$ must be the same as $1$ and $-c$. Therefore the three points are $\{1,c,-c\}.$ But their product is $1$, so that $-c^2 = 1$, $c = \pm i.$

Therefore $x,y,z$ are cube roots of $1,i,-i$. That leaves only finitely many possible choices for $x,y,z$. You can check that all of them are obtained (by rotation of the circle) from two basic solutions $\{1,\omega,\omega^{-1}\}$ and $\{1,\omega^5,\omega^{-5}\}$, where $\omega = e^{i\pi/6}$. The corresponding values of $|x+y+z|$ are $\sqrt3+1$ and $\sqrt3-1$, with product $(\sqrt3+1)( \sqrt3-1) = \boxed2.$[/sp]

What a neat solution, bravo, Opalg! And thanks for participating.

I would also like to share the solution that comes along with this good problem, here goes:

Let $s=x+y+z$

Then

$\begin{align*}s^3&=x^3+y^3+z^3+3(x^2y+xy^2+y^2z+yz^2+z^2x+zx^2)+6xyz\\&=xyz\left(\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}+3\left(\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\right)+6\right)\\&=xyz\left(1+\left(3(x+y+z)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-9\right)+6\right)\\&=xyz\left(3s\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-2\right)\\&=xyz(3s\overline{s}-2)\,\,\text{because $\overline{s}=\overline{x}+\overline{y}+\overline{z}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}$}\\&=xyz(3\left| s \right|^2-2)\end{align*}$

Taking absolute values, we find $\left| s \right|^3=\left| \left| 3s \right|^2-2 \right|$. It follows that $\left| s \right|$ must be a positive real root of $a^3-3a^2+2=0$ or $a^3+3a^2-2=0$. However, since the negative real roots of $a^3-3a^2+2=0$ are exactly the additive inverses of the positive real roots of $a^3-3a^2+2=0$, and all three roots of $a^3-2a^2+2=0$ are real ($a^3-3a^2+2=0$ maybe factored as $(a-1)(a^2-2a-2)=0$, and the discriminant of $a^2-2a-2$ is positive), the product of all possible values of $\left| s \right|$ is $(-2)\cdot(-1)^n$, where $n$ denotes the number of negative real roos of $a^3-3a^2+2=0$. By Descartes's Rule of Signs, we see that $n$ is odd, so the answer is 2, as desired.
 

Similar threads

Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K