MHB Find an A and b such that Ax=b has the solution set......

  • Thread starter Thread starter TomSavage
  • Start date Start date
  • Tags Tags
    Set
TomSavage
Messages
4
Reaction score
0
the solution set for the problem is

x1=s+1

x2=t-2

x3=2s+2t

x4=s-t+1I was thinking that I would have to isolate all the variables to one side and create a matrix and then get all the integers to another side and multiply them in order to get b but that doesn't seem correct to me. Can anyone show me/tell me how to complete this and more importantly why it is completed the way that they are showing, thanks.
 
Last edited:
Physics news on Phys.org
Hi TomSavage.

By inspecting the equations, the easiest thing to do first would be to express $x_3$ and $x_4$ in terms of $x_1$ and $x_2$:
$$x_3=2s+2t=2(s+1)+2(t-2)+2=2x_1+2x_2+2 \\ x_4=s-t+1=(s+1)-(t-2)-2=x_1-x_2-2.$$
So
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 2x_1+2x_2+2 \\ x_1-x_2-2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}+\begin{pmatrix} 0 \\ 0 \\ 2 \\ -2 \end{pmatrix}$$
Hence you can take
$$\mathbf A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}-\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}=\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & -2 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{pmatrix}$$
and
$$\mathbf b=\begin{pmatrix} 0 \\ 0 \\ 2 \\ -2 \end{pmatrix}.$$
 
Olinguito said:
$$\mathbf A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}-\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}=\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & -2 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{pmatrix}$$
There's something here I'm not following. Why are you doing the line above? I don't understand how that's supposed to work.

Thanks!

-Dan
 
In
Olinguito said:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 2x_1+2x_2+2 \\ x_1-x_2-2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}+\begin{pmatrix} 0 \\ 0 \\ 2 \\ -2 \end{pmatrix}$$

the LHS is
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$
 
Olinguito said:
In

the LHS is
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$

So obvious! Thanks for explaining that. :)

-Dan
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top