Find an A and b such that Ax=b has the solution set......

  • Context: MHB 
  • Thread starter Thread starter TomSavage
  • Start date Start date
  • Tags Tags
    Set
Click For Summary
SUMMARY

The discussion focuses on solving the equation Ax=b, where the solution set is defined by the equations x1=s+1, x2=t-2, x3=2s+2t, and x4=s-t+1. The matrix A is derived as A = [[0, 0, 0, 0], [0, 0, 0, 0], [-2, -2, 1, 0], [-1, 1, 0, 1]] and the vector b is defined as b = [0, 0, 2, -2]. The participants clarify the process of expressing variables in terms of others and the significance of matrix operations in deriving the solution.

PREREQUISITES
  • Understanding of linear algebra concepts, specifically matrix operations.
  • Familiarity with vector notation and representation.
  • Knowledge of parameterization in linear equations.
  • Ability to manipulate and simplify algebraic expressions.
NEXT STEPS
  • Study matrix representation of linear equations, focusing on concepts like row reduction and echelon forms.
  • Learn about parameterization techniques in linear algebra to express solutions in terms of free variables.
  • Explore the implications of different matrix forms on the solution set of linear equations.
  • Investigate the use of software tools like MATLAB or Python's NumPy for solving linear systems.
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, as well as engineers and data scientists working with systems of equations and matrix computations.

TomSavage
Messages
4
Reaction score
0
the solution set for the problem is

x1=s+1

x2=t-2

x3=2s+2t

x4=s-t+1I was thinking that I would have to isolate all the variables to one side and create a matrix and then get all the integers to another side and multiply them in order to get b but that doesn't seem correct to me. Can anyone show me/tell me how to complete this and more importantly why it is completed the way that they are showing, thanks.
 
Last edited:
Physics news on Phys.org
Hi TomSavage.

By inspecting the equations, the easiest thing to do first would be to express $x_3$ and $x_4$ in terms of $x_1$ and $x_2$:
$$x_3=2s+2t=2(s+1)+2(t-2)+2=2x_1+2x_2+2 \\ x_4=s-t+1=(s+1)-(t-2)-2=x_1-x_2-2.$$
So
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 2x_1+2x_2+2 \\ x_1-x_2-2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}+\begin{pmatrix} 0 \\ 0 \\ 2 \\ -2 \end{pmatrix}$$
Hence you can take
$$\mathbf A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}-\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}=\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & -2 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{pmatrix}$$
and
$$\mathbf b=\begin{pmatrix} 0 \\ 0 \\ 2 \\ -2 \end{pmatrix}.$$
 
Olinguito said:
$$\mathbf A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}-\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}=\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & -2 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{pmatrix}$$
There's something here I'm not following. Why are you doing the line above? I don't understand how that's supposed to work.

Thanks!

-Dan
 
In
Olinguito said:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 2x_1+2x_2+2 \\ x_1-x_2-2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}+\begin{pmatrix} 0 \\ 0 \\ 2 \\ -2 \end{pmatrix}$$

the LHS is
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$
 
Olinguito said:
In

the LHS is
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$

So obvious! Thanks for explaining that. :)

-Dan
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 9 ·
Replies
9
Views
2K