MHB Find an A and b such that Ax=b has the solution set......

  • Thread starter Thread starter TomSavage
  • Start date Start date
  • Tags Tags
    Set
TomSavage
Messages
4
Reaction score
0
the solution set for the problem is

x1=s+1

x2=t-2

x3=2s+2t

x4=s-t+1I was thinking that I would have to isolate all the variables to one side and create a matrix and then get all the integers to another side and multiply them in order to get b but that doesn't seem correct to me. Can anyone show me/tell me how to complete this and more importantly why it is completed the way that they are showing, thanks.
 
Last edited:
Physics news on Phys.org
Hi TomSavage.

By inspecting the equations, the easiest thing to do first would be to express $x_3$ and $x_4$ in terms of $x_1$ and $x_2$:
$$x_3=2s+2t=2(s+1)+2(t-2)+2=2x_1+2x_2+2 \\ x_4=s-t+1=(s+1)-(t-2)-2=x_1-x_2-2.$$
So
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 2x_1+2x_2+2 \\ x_1-x_2-2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}+\begin{pmatrix} 0 \\ 0 \\ 2 \\ -2 \end{pmatrix}$$
Hence you can take
$$\mathbf A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}-\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}=\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & -2 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{pmatrix}$$
and
$$\mathbf b=\begin{pmatrix} 0 \\ 0 \\ 2 \\ -2 \end{pmatrix}.$$
 
Olinguito said:
$$\mathbf A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}-\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}=\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & -2 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{pmatrix}$$
There's something here I'm not following. Why are you doing the line above? I don't understand how that's supposed to work.

Thanks!

-Dan
 
In
Olinguito said:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 2x_1+2x_2+2 \\ x_1-x_2-2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}+\begin{pmatrix} 0 \\ 0 \\ 2 \\ -2 \end{pmatrix}$$

the LHS is
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$
 
Olinguito said:
In

the LHS is
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$

So obvious! Thanks for explaining that. :)

-Dan
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
4
Views
1K
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K