MHB Find Distance of Object From Pole Given Angle/Ilumination on a Pole

  • Thread starter Thread starter leprofece
  • Start date Start date
  • Tags Tags
    Angle
leprofece
Messages
239
Reaction score
0
on a pole, two reflectors located on the heights a and b, focus the same object on the ground. at what distance from the pole will the object be When is the angle forming light rays maximum?

Answer sqrt (ab)

maybe the angle is tang -1a/b

or sin (h/d2)?
 
Physics news on Phys.org
Hello, leprofece!

On a pole, two reflectors located at heights a and b
focus on the same object on the ground.
At what distance from the pole will the object be
when the angle forming light rays is a maximum?

Answer: sqrt (ab)
First, we need an accurate diagram.

Code:
      -   *
      :   |*
      :   | *
      :   |  *
      :   |   *
      a - *    *
      : : | *   *
      : : |   * θ*
      : b |     * *
      : : |     α **
      - - * - - - - *
               x
We want to find the distance x
so that angle \theta is maximum.

We have: .\tan\alpha \,=\,\frac{b}{x} \quad\Rightarrow\quad x \,=\,\frac{b}{\tan\alpha}\;\;[1]

And: .\tan(\theta + \alpha) \,=\,\frac{a}{x} \quad\Rightarrow\quad x \,=\,\frac{a}{\tan(\theta+\alpha)}\;\;[2]

Equate [1] and [2]: .\frac{b}{\tan\alpha} \:=\:\frac{a}{\tan(\theta+\alpha)}

. . . . . .b\tan(\theta+\alpha) \:=\:a\tan\alpha

. . b\frac{\tan\theta+\tan\alpha}{1-\tan\alpha\tan\theta} \:=\:a\tan\alpha

Solve for \tan\theta\!:\;\;\tan\theta \:=\:\frac{(a-b)\tan\alpha}{b - a\tan^2!\alpha}

Differentiate and simplify:
. . \sec^2\!\theta\frac{d\theta}{d\alpha} \:=\:\frac{(a-b)\sec^2\!\alpha\,(b-a\tan^2\!\alpha)}{(b+a\tan^2\!\alpha)^2}

Then: .b-a\tan^2\!\alpha \:=\:0 \quad\Rightarrow\quad \tan^2\!\alpha \,=\,\frac{b}{a}
Hence: .\tan\alpha \,=\,\sqrt{\frac{b}{a}}
Substitute into [1]: .x \:=\:\frac{b}{\tan\alpha} \:=\:\frac{b}{\sqrt{\frac{b}{a}}} \:=\:b\cdot\frac{\sqrt{a}}{\sqrt{b}}
Therefore: .x \;=\;\sqrt{ab}
 
Back
Top