MHB Find Distance of Object From Pole Given Angle/Ilumination on a Pole

  • Thread starter Thread starter leprofece
  • Start date Start date
  • Tags Tags
    Angle
Click For Summary
The discussion revolves around determining the distance from a pole to an object based on the heights of two reflectors positioned on the pole. The key formula derived is x = sqrt(ab), which represents the distance when the angle of light rays is maximized. The calculations involve using tangent functions to relate the angles and distances associated with the reflectors. The maximum angle condition leads to the conclusion that tan(α) = sqrt(b/a). Overall, the mathematical approach emphasizes the relationship between the heights of the reflectors and the distance to the object.
leprofece
Messages
239
Reaction score
0
on a pole, two reflectors located on the heights a and b, focus the same object on the ground. at what distance from the pole will the object be When is the angle forming light rays maximum?

Answer sqrt (ab)

maybe the angle is tang -1a/b

or sin (h/d2)?
 
Physics news on Phys.org
Hello, leprofece!

On a pole, two reflectors located at heights a and b
focus on the same object on the ground.
At what distance from the pole will the object be
when the angle forming light rays is a maximum?

Answer: sqrt (ab)
First, we need an accurate diagram.

Code:
      -   *
      :   |*
      :   | *
      :   |  *
      :   |   *
      a - *    *
      : : | *   *
      : : |   * θ*
      : b |     * *
      : : |     α **
      - - * - - - - *
               x
We want to find the distance x
so that angle \theta is maximum.

We have: .\tan\alpha \,=\,\frac{b}{x} \quad\Rightarrow\quad x \,=\,\frac{b}{\tan\alpha}\;\;[1]

And: .\tan(\theta + \alpha) \,=\,\frac{a}{x} \quad\Rightarrow\quad x \,=\,\frac{a}{\tan(\theta+\alpha)}\;\;[2]

Equate [1] and [2]: .\frac{b}{\tan\alpha} \:=\:\frac{a}{\tan(\theta+\alpha)}

. . . . . .b\tan(\theta+\alpha) \:=\:a\tan\alpha

. . b\frac{\tan\theta+\tan\alpha}{1-\tan\alpha\tan\theta} \:=\:a\tan\alpha

Solve for \tan\theta\!:\;\;\tan\theta \:=\:\frac{(a-b)\tan\alpha}{b - a\tan^2!\alpha}

Differentiate and simplify:
. . \sec^2\!\theta\frac{d\theta}{d\alpha} \:=\:\frac{(a-b)\sec^2\!\alpha\,(b-a\tan^2\!\alpha)}{(b+a\tan^2\!\alpha)^2}

Then: .b-a\tan^2\!\alpha \:=\:0 \quad\Rightarrow\quad \tan^2\!\alpha \,=\,\frac{b}{a}
Hence: .\tan\alpha \,=\,\sqrt{\frac{b}{a}}
Substitute into [1]: .x \:=\:\frac{b}{\tan\alpha} \:=\:\frac{b}{\sqrt{\frac{b}{a}}} \:=\:b\cdot\frac{\sqrt{a}}{\sqrt{b}}
Therefore: .x \;=\;\sqrt{ab}
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
14
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
3K
Replies
5
Views
11K