MHB Find Equation of Tangent Line at (4π, f(4π)) - Graffer's Question

AI Thread Summary
The equation of the tangent line to the curve y=f(x)=x(10cos x-2sin x) at the point (4π, f(4π)) is derived using the point-slope formula. The function value at this point is calculated as f(4π)=40π. The derivative f'(x) is determined, and specifically f'(4π) is found to be 2(5-4π). Consequently, the equation of the tangent line is expressed as y=2(5-4π)(x-4π)+40π, which simplifies to slope-intercept form as y=2(5-4π)x+32π². A plot of the curve alongside its tangent line at the specified point is also provided.
Mathematics news on Phys.org
Re: graffer's question at Yahoo! Answers regarding finding the euqation of a tangent line

Hello graffer,

Using the point-slope formula, with the point $(4\pi,f(4\pi))$ and the slope $f'(4\pi)$, the equation of the tangent line is:

$y=f'(4\pi)(x-4\pi)+f(4\pi)$

Using the given function definition, we find:

$f(4\pi)=4\pi(10\cos(4\pi)-2\sin(4\pi))=4\pi(10)=40\pi$

$f'(x)=x(-10\sin(x)-2\cos(x))+(1)(10\cos(x)-2\sin(x))=2((5-x)\cos(x)-(5x+1)\sin(x))$

$f'(4\pi)=2((5-4\pi)\cos(4\pi)-(5\cdot4\pi+1)\sin(4\pi))=2(5-4\pi)$

Putting it all together, we find the equation of the tangent line is:

$y=2(5-4\pi)(x-4\pi)+40\pi$

In slope-intercept form, this is:

$y=2(5-4\pi)x+32\pi^2$

Here is a plot of the curve and its tangent line at the given point:

23ll5xy.jpg
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top