MHB Find Formula for nth Term in Tuff Sequence

  • Thread starter Thread starter Wilmer
  • Start date Start date
  • Tags Tags
    Sequence
Click For Summary
The discussion focuses on finding a formula for the nth term of a sequence resembling Sloane's #A010551, with additional multiplication. Participants propose different formulas, with one suggesting a simpler approach using factorials based on the floor function of n divided by 3. Another participant acknowledges the validity of this simpler formula while humorously noting the complexity of their own contributions. The conversation highlights the collaborative effort to derive an effective formula for the sequence. Overall, the exchange showcases a mix of mathematical exploration and friendly banter among contributors.
Wilmer
Messages
303
Reaction score
0
This sequence is similar to Sloane's #A010551; one further multiplication is made...
Code:
n= 0  1  2  3  4  5  6   7   8    9   10    11     12
   1  1  1  1  2  4  8  24  72  216  864  3456  13824...
Find a formula for the nth term.
 
Mathematics news on Phys.org
Wilmer said:
This sequence is similar to Sloane's #A010551; one further multiplication is made...
Code:
n= 0  1  2  3  4  5  6   7   8    9   10    11     12
   1  1  1  1  2  4  8  24  72  216  864  3456  13824...
Find a formula for the nth term.

This sequence is generated by:
$$a_n = \tau_n a_{n - 1} ~ \text{with} ~ a_0 = 1$$
Where $\tau_n$ is given by:
$$\tau_n = \begin{cases} 1 ~ ~ &\text{if} ~ 1 \leq n \leq 3 \\ 2 ~ ~ &\text{if} ~ 4 \leq n \leq 6 \\ 3 ~ ~ &\text{if} ~ 7 \leq n \leq 9 \\ &\cdots \end{cases}$$
It's easy to see that $\tau_{3n} = n$ and since every three elements 1, 2, 3, then 4, 5, 6, then 7, 8, 9, etc. are the same, we have $\tau_{3n - 2} = \tau_{3n - 1} = n$ and $\tau_{3n + 1} = \tau_{3n + 2} = n + 1$.
Now observe that:
$$a_{3n} = \tau_{3n} a_{3n - 1} = \tau_{3n} \tau_{3n - 1} a_{3n - 2} = \tau_{3n} \tau_{3n - 1} \tau_{3n - 2} a_{3(n - 1)} = n^3 a_{3(n - 1)}$$
So that by induction we have:
$$a_{3n} = (n!)^3$$
Then:
$$a_{3n + 1} = \tau_{3n + 1} a_{3n} = (n + 1) (n!)^3$$
And:
$$a_{3n + 2} = \tau_{3n + 2} a_{3n + 1} = \tau_{3n + 2} \tau_{3n + 1} a_{3n} = (n + 1)^2 (n!)^3$$
And so we can conclude:
$$a_n = \begin{cases} (m!)^3 ~ ~ &\text{if} ~ n = 3m \\ (m + 1) (m!)^3 ~ ~ &\text{if} ~ n = 3m + 1 \\ (m + 1)^2 (m!)^3 ~ ~ &\text{if} ~ n = 3m + 2 \end{cases}$$
Or, more directly:
$$a_n = \left ( \left \lfloor \frac{n}{3} \right \rfloor + 1 \right )^{n \bmod{3}} \left ( \left \lfloor \frac{n}{3} \right \rfloor ! \right)^3$$
I suppose this can be easily generalized to any similar $\tau_n$ sequence of the form 1, 1, $k$ times, 2, 2, $k$ times, etc.. but I haven't tried.​
 
Nice, Bac! Mine's simpler:

nth term = a * b * c, where:
a = [FLOOR(n/3)]!
b = [FLOOR((n+1)/3)]!
c = [FLOOR((n+2)/3)]!
 
Wilmer said:
Nice, Bac! Mine's simpler:

nth term = a * b * c, where:
a = [FLOOR(n/3)]!
b = [FLOOR((n+1)/3)]!
c = [FLOOR((n+2)/3)]!

Ah, yep, that works too. Not bad :)
 
Hi,

You ask for one formula, I bring you a non countable set of formulas :cool:

Let $c=(1,1,1,1,2,4,8,24,72,216,864,3456,13824,r)^{T}\in \Bbb{R}^{14}$ with $r\in \Bbb{R}$.

Define $A=\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0\\
1^{0}& 1 & 1^{2} & \ldots & 1^{13}\\
2^{0}& 2 & 2^{2} & \ldots & 2^{13}\\
\vdots & \vdots & \vdots & \ddots & \vdots \\
13^{0} & 13 & 13^{2}& \ldots & 13^{13}\end{array}\right)$

Call $b=(b_{0}, b_{1},\ldots , b_{13})^{T}\in \Bbb{R}^{14}$, the solution of the linear equations

$Ab=c$

And now consider the polynomial $p_{r}(x)=\displaystyle\sum_{i=0}^{13}b_{i}x^{i}$.

Then $p_{r}(0)=1, p_{r}(1)=1, \ldots , p_{r}(12)=13824, p_{r}(13)=r$.

And works for every $r\in \Bbb{R}$

The n-th term will be now $p_{r}(n)$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K