Find Formula for nth Term in Tuff Sequence

  • Context: MHB 
  • Thread starter Thread starter Wilmer
  • Start date Start date
  • Tags Tags
    Sequence
Click For Summary

Discussion Overview

The discussion revolves around finding a formula for the nth term in the Tuff sequence, which is compared to Sloane's #A010551. The scope includes mathematical reasoning and exploration of different proposed formulas.

Discussion Character

  • Exploratory, Mathematical reasoning, Debate/contested

Main Points Raised

  • One participant presents the Tuff sequence and requests a formula for the nth term, noting its similarity to Sloane's #A010551 with an additional multiplication.
  • Another participant proposes a formula for the nth term expressed as a product of factorials based on the floor function of n divided by 3.
  • A later reply acknowledges the proposed formula as valid and expresses approval.
  • One participant humorously suggests that the request for a single formula results in a non-countable set of formulas, indicating a variety of potential solutions.

Areas of Agreement / Disagreement

Participants express differing approaches to formulating the nth term, with no consensus on a single formula. Multiple competing views remain regarding the formulation.

Contextual Notes

Participants have not resolved the specific assumptions or definitions underlying their proposed formulas, and the discussion reflects varying interpretations of the sequence.

Wilmer
Messages
303
Reaction score
0
This sequence is similar to Sloane's #A010551; one further multiplication is made...
Code:
n= 0  1  2  3  4  5  6   7   8    9   10    11     12
   1  1  1  1  2  4  8  24  72  216  864  3456  13824...
Find a formula for the nth term.
 
Mathematics news on Phys.org
Wilmer said:
This sequence is similar to Sloane's #A010551; one further multiplication is made...
Code:
n= 0  1  2  3  4  5  6   7   8    9   10    11     12
   1  1  1  1  2  4  8  24  72  216  864  3456  13824...
Find a formula for the nth term.

This sequence is generated by:
$$a_n = \tau_n a_{n - 1} ~ \text{with} ~ a_0 = 1$$
Where $\tau_n$ is given by:
$$\tau_n = \begin{cases} 1 ~ ~ &\text{if} ~ 1 \leq n \leq 3 \\ 2 ~ ~ &\text{if} ~ 4 \leq n \leq 6 \\ 3 ~ ~ &\text{if} ~ 7 \leq n \leq 9 \\ &\cdots \end{cases}$$
It's easy to see that $\tau_{3n} = n$ and since every three elements 1, 2, 3, then 4, 5, 6, then 7, 8, 9, etc. are the same, we have $\tau_{3n - 2} = \tau_{3n - 1} = n$ and $\tau_{3n + 1} = \tau_{3n + 2} = n + 1$.
Now observe that:
$$a_{3n} = \tau_{3n} a_{3n - 1} = \tau_{3n} \tau_{3n - 1} a_{3n - 2} = \tau_{3n} \tau_{3n - 1} \tau_{3n - 2} a_{3(n - 1)} = n^3 a_{3(n - 1)}$$
So that by induction we have:
$$a_{3n} = (n!)^3$$
Then:
$$a_{3n + 1} = \tau_{3n + 1} a_{3n} = (n + 1) (n!)^3$$
And:
$$a_{3n + 2} = \tau_{3n + 2} a_{3n + 1} = \tau_{3n + 2} \tau_{3n + 1} a_{3n} = (n + 1)^2 (n!)^3$$
And so we can conclude:
$$a_n = \begin{cases} (m!)^3 ~ ~ &\text{if} ~ n = 3m \\ (m + 1) (m!)^3 ~ ~ &\text{if} ~ n = 3m + 1 \\ (m + 1)^2 (m!)^3 ~ ~ &\text{if} ~ n = 3m + 2 \end{cases}$$
Or, more directly:
$$a_n = \left ( \left \lfloor \frac{n}{3} \right \rfloor + 1 \right )^{n \bmod{3}} \left ( \left \lfloor \frac{n}{3} \right \rfloor ! \right)^3$$
I suppose this can be easily generalized to any similar $\tau_n$ sequence of the form 1, 1, $k$ times, 2, 2, $k$ times, etc.. but I haven't tried.​
 
Nice, Bac! Mine's simpler:

nth term = a * b * c, where:
a = [FLOOR(n/3)]!
b = [FLOOR((n+1)/3)]!
c = [FLOOR((n+2)/3)]!
 
Wilmer said:
Nice, Bac! Mine's simpler:

nth term = a * b * c, where:
a = [FLOOR(n/3)]!
b = [FLOOR((n+1)/3)]!
c = [FLOOR((n+2)/3)]!

Ah, yep, that works too. Not bad :)
 
Hi,

You ask for one formula, I bring you a non countable set of formulas :cool:

Let $c=(1,1,1,1,2,4,8,24,72,216,864,3456,13824,r)^{T}\in \Bbb{R}^{14}$ with $r\in \Bbb{R}$.

Define $A=\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0\\
1^{0}& 1 & 1^{2} & \ldots & 1^{13}\\
2^{0}& 2 & 2^{2} & \ldots & 2^{13}\\
\vdots & \vdots & \vdots & \ddots & \vdots \\
13^{0} & 13 & 13^{2}& \ldots & 13^{13}\end{array}\right)$

Call $b=(b_{0}, b_{1},\ldots , b_{13})^{T}\in \Bbb{R}^{14}$, the solution of the linear equations

$Ab=c$

And now consider the polynomial $p_{r}(x)=\displaystyle\sum_{i=0}^{13}b_{i}x^{i}$.

Then $p_{r}(0)=1, p_{r}(1)=1, \ldots , p_{r}(12)=13824, p_{r}(13)=r$.

And works for every $r\in \Bbb{R}$

The n-th term will be now $p_{r}(n)$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
10K
  • · Replies 12 ·
Replies
12
Views
3K