MHB Find Integer $k$ to Satisfy Sum of Inverse Progression > 2000

Click For Summary
An integer \( k \) must be found such that the sum \( \frac{1}{k} + \frac{1}{k+1} + \frac{1}{k+2} + \cdots + \frac{1}{k^2} \) exceeds 2000. One participant confirmed their solution is correct and expressed appreciation for the challenge. The thread encourages further submissions and discussion on the problem. A solution from another source is mentioned but not detailed. Engaging with this challenge can enhance problem-solving skills in inverse progression.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find an integer $k$ for which $\dfrac{1}{k}+\dfrac{1}{k+1}+\dfrac{1}{k+2}+\cdots+\dfrac{1}{k^2}>2000$.
 
Mathematics news on Phys.org
I try:
$\displaystyle\dfrac{1}{k}+\dfrac{1}{k+1}+\dfrac{1}{k+2}+\cdots+\dfrac{1}{k^2}=\sum_{1}^{k^2}\dfrac{1}{n}-\sum_{1}^{k-1}\dfrac{1}{n}$
The partial sums of the harmonic series have logarithmic growth i.e. $\displaystyle\sum_{1}^{k}\dfrac{1}{n}\sim \ln k$
therefore
$\displaystyle\sum_{1}^{k^2}\dfrac{1}{n}-\sum_{1}^{k}\dfrac{1}{n}\sim \ln k^2-\ln (k-1)=\ln\dfrac{k^2}{k-1}$.
$\ln\dfrac{k^2}{k-1}>2000\ \Rightarrow\ \dfrac{k^2}{k-1}>e^{2000}\ \Rightarrow k>\dfrac{e^{2000}+\sqrt{e^{4000}-4e^{2000}}}{2}$.
$\dfrac{e^{2000}+\sqrt{e^{4000}-4e^{2000}}}{2}\sim 3.88\cdot 10^{868}$.
$4\cdot 10^{868}$ should be enough...
 
laura123 said:
I try:
$\displaystyle\dfrac{1}{k}+\dfrac{1}{k+1}+\dfrac{1}{k+2}+\cdots+\dfrac{1}{k^2}=\sum_{1}^{k^2}\dfrac{1}{n}-\sum_{1}^{k-1}\dfrac{1}{n}$
The partial sums of the harmonic series have logarithmic growth i.e. $\displaystyle\sum_{1}^{k}\dfrac{1}{n}\sim \ln k$
therefore
$\displaystyle\sum_{1}^{k^2}\dfrac{1}{n}-\sum_{1}^{k}\dfrac{1}{n}\sim \ln k^2-\ln (k-1)=\ln\dfrac{k^2}{k-1}$.
$\ln\dfrac{k^2}{k-1}>2000\ \Rightarrow\ \dfrac{k^2}{k-1}>e^{2000}\ \Rightarrow k>\dfrac{e^{2000}+\sqrt{e^{4000}-4e^{2000}}}{2}$.
$\dfrac{e^{2000}+\sqrt{e^{4000}-4e^{2000}}}{2}\sim 3.88\cdot 10^{868}$.
$4\cdot 10^{868}$ should be enough...

Hi Laura123,

Sorry for the late reply. I can explain...Actually I hoped there would be more submissions for this challenge, that was why I waited a bit longer...:o

You have done a great job there and your answer is correct, well done! And thanks for participating in this particular challenge.

I want to share with you and other members the solution that I have found online:

Solution of other:

Any integer $k>e^{2000}$ suffices.

For $\displaystyle \sum_{n=k}^{k^2} \dfrac{1}{n}=\int_{k}^{k^2+1} \dfrac{1}{\left\lfloor{x}\right\rfloor}\,dx>\int_{k}^{k^2} \dfrac{1}{x}\,dx=\ln k$

and $\ln k>2000$ when $k>e^{2000}$.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
990
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
586
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K