MHB Find Integer $k$ to Satisfy Sum of Inverse Progression > 2000

AI Thread Summary
An integer \( k \) must be found such that the sum \( \frac{1}{k} + \frac{1}{k+1} + \frac{1}{k+2} + \cdots + \frac{1}{k^2} \) exceeds 2000. One participant confirmed their solution is correct and expressed appreciation for the challenge. The thread encourages further submissions and discussion on the problem. A solution from another source is mentioned but not detailed. Engaging with this challenge can enhance problem-solving skills in inverse progression.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find an integer $k$ for which $\dfrac{1}{k}+\dfrac{1}{k+1}+\dfrac{1}{k+2}+\cdots+\dfrac{1}{k^2}>2000$.
 
Mathematics news on Phys.org
I try:
$\displaystyle\dfrac{1}{k}+\dfrac{1}{k+1}+\dfrac{1}{k+2}+\cdots+\dfrac{1}{k^2}=\sum_{1}^{k^2}\dfrac{1}{n}-\sum_{1}^{k-1}\dfrac{1}{n}$
The partial sums of the harmonic series have logarithmic growth i.e. $\displaystyle\sum_{1}^{k}\dfrac{1}{n}\sim \ln k$
therefore
$\displaystyle\sum_{1}^{k^2}\dfrac{1}{n}-\sum_{1}^{k}\dfrac{1}{n}\sim \ln k^2-\ln (k-1)=\ln\dfrac{k^2}{k-1}$.
$\ln\dfrac{k^2}{k-1}>2000\ \Rightarrow\ \dfrac{k^2}{k-1}>e^{2000}\ \Rightarrow k>\dfrac{e^{2000}+\sqrt{e^{4000}-4e^{2000}}}{2}$.
$\dfrac{e^{2000}+\sqrt{e^{4000}-4e^{2000}}}{2}\sim 3.88\cdot 10^{868}$.
$4\cdot 10^{868}$ should be enough...
 
laura123 said:
I try:
$\displaystyle\dfrac{1}{k}+\dfrac{1}{k+1}+\dfrac{1}{k+2}+\cdots+\dfrac{1}{k^2}=\sum_{1}^{k^2}\dfrac{1}{n}-\sum_{1}^{k-1}\dfrac{1}{n}$
The partial sums of the harmonic series have logarithmic growth i.e. $\displaystyle\sum_{1}^{k}\dfrac{1}{n}\sim \ln k$
therefore
$\displaystyle\sum_{1}^{k^2}\dfrac{1}{n}-\sum_{1}^{k}\dfrac{1}{n}\sim \ln k^2-\ln (k-1)=\ln\dfrac{k^2}{k-1}$.
$\ln\dfrac{k^2}{k-1}>2000\ \Rightarrow\ \dfrac{k^2}{k-1}>e^{2000}\ \Rightarrow k>\dfrac{e^{2000}+\sqrt{e^{4000}-4e^{2000}}}{2}$.
$\dfrac{e^{2000}+\sqrt{e^{4000}-4e^{2000}}}{2}\sim 3.88\cdot 10^{868}$.
$4\cdot 10^{868}$ should be enough...

Hi Laura123,

Sorry for the late reply. I can explain...Actually I hoped there would be more submissions for this challenge, that was why I waited a bit longer...:o

You have done a great job there and your answer is correct, well done! And thanks for participating in this particular challenge.

I want to share with you and other members the solution that I have found online:

Solution of other:

Any integer $k>e^{2000}$ suffices.

For $\displaystyle \sum_{n=k}^{k^2} \dfrac{1}{n}=\int_{k}^{k^2+1} \dfrac{1}{\left\lfloor{x}\right\rfloor}\,dx>\int_{k}^{k^2} \dfrac{1}{x}\,dx=\ln k$

and $\ln k>2000$ when $k>e^{2000}$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top