Maple Find Jordan Canonical Form with Maple

AI Thread Summary
The discussion centers on a 10x10 matrix that has been shown to be nilpotent, as its sixth power results in the zero matrix. The participant believes the matrix's signature is (0, 5, 0, 3, 0, 2). However, they have not yet determined the Jordan canonical form and are seeking assistance from others who have access to Maple or Matlab to compute it. A solution using GNU Octave is provided, which includes the command to find the Jordan form, resulting in a specific structure that indicates the presence of Jordan blocks corresponding to the eigenvalues. The conversation highlights the need for computational tools to facilitate the analysis of matrix properties in linear algebra.
joypav
Messages
149
Reaction score
0
Hi all!
I have to show that the matrix 10x10 matrix below is nilpotent, determine its signature, and find its Jordan canonical form.

[-2 , 19/2 , -17/2 , 0 , -13 , 9 , -4 , 7 , -2 , -13]
[15 , -51 , 48 , -8 , 80 , -48 , 19 , -39 , 10 , 74]
[-7 , 34 , -33 , 0 , -50 , 31 , -11 , 27 , -6 , -47]
[1 , -4 , 4 , -1 , 7 , -4 , 1 , -3 , 1 , 6]
[0 , -2 , 2 , 0 , 3 , -2 , 1 , -1 , 0 , 3]
[-11 , 91/2 , -87/2 , 4 , -70 , 42 , -16 , 35 , -8 , -65]
[-1 , 9/2 , -9/2 , 0 , -7 , 4 , -1 , 4 , -1 , -6]
[-9 , 39 , -37 , 2 , -58 , 36 , -14 , 30 , -7 , -55]
[-7 , 32 , -31 , 1 , -48 , 29 , -11 , 25 , -5 , -45]
[5 , -25/2 , 23/2 , -3 , 20 , -12 , 5 , -10 , 3 , 18]

I've shown that the matrix to the sixth power is the zero matrix (so it's nilpotent). And I believe the signature is (0, 5, 0, 3, 0, 2).. if I've done it correctly.

Anyways, I have not yet found the Jordan Canonical form. We are allowed to use Maple but I do not yet have it for my laptop (an old professor of mine said he would get it for me so I don't have to pay). I know there is a command in Maple that will find it for you.
Could someone with Maple (or Matlab) find it for me? I would really appreciate it!
 
Physics news on Phys.org
joypav said:
Hi all!
I have to show that the matrix 10x10 matrix below is nilpotent, determine its signature, and find its Jordan canonical form.

[-2 , 19/2 , -17/2 , 0 , -13 , 9 , -4 , 7 , -2 , -13]
[15 , -51 , 48 , -8 , 80 , -48 , 19 , -39 , 10 , 74]
[-7 , 34 , -33 , 0 , -50 , 31 , -11 , 27 , -6 , -47]
[1 , -4 , 4 , -1 , 7 , -4 , 1 , -3 , 1 , 6]
[0 , -2 , 2 , 0 , 3 , -2 , 1 , -1 , 0 , 3]
[-11 , 91/2 , -87/2 , 4 , -70 , 42 , -16 , 35 , -8 , -65]
[-1 , 9/2 , -9/2 , 0 , -7 , 4 , -1 , 4 , -1 , -6]
[-9 , 39 , -37 , 2 , -58 , 36 , -14 , 30 , -7 , -55]
[-7 , 32 , -31 , 1 , -48 , 29 , -11 , 25 , -5 , -45]
[5 , -25/2 , 23/2 , -3 , 20 , -12 , 5 , -10 , 3 , 18]

I've shown that the matrix to the sixth power is the zero matrix (so it's nilpotent). And I believe the signature is (0, 5, 0, 3, 0, 2).. if I've done it correctly.

Anyways, I have not yet found the Jordan Canonical form. We are allowed to use Maple but I do not yet have it for my laptop (an old professor of mine said he would get it for me so I don't have to pay). I know there is a command in Maple that will find it for you.
Could someone with Maple (or Matlab) find it for me? I would really appreciate it!

With GNU Octave (open source version of MatLab):
Code:
A=[[-2 , 19/2 , -17/2 , 0 , -13 , 9 , -4 , 7 , -2 , -13]
[15 , -51 , 48 , -8 , 80 , -48 , 19 , -39 , 10 , 74]
[-7 , 34 , -33 , 0 , -50 , 31 , -11 , 27 , -6 , -47]
[1 , -4 , 4 , -1 , 7 , -4 , 1 , -3 , 1 , 6]
[0 , -2 , 2 , 0 , 3 , -2 , 1 , -1 , 0 , 3]
[-11 , 91/2 , -87/2 , 4 , -70 , 42 , -16 , 35 , -8 , -65]
[-1 , 9/2 , -9/2 , 0 , -7 , 4 , -1 , 4 , -1 , -6]
[-9 , 39 , -37 , 2 , -58 , 36 , -14 , 30 , -7 , -55]
[-7 , 32 , -31 , 1 , -48 , 29 , -11 , 25 , -5 , -45]
[5 , -25/2 , 23/2 , -3 , 20 , -12 , 5 , -10 , 3 , 18]];

pkg load symbolic
jordan(sym(A))
  ⎡0  1  0  0  0  0  0  0  0  0⎤
  ⎢                            ⎥
  ⎢0  0  1  0  0  0  0  0  0  0⎥
  ⎢                            ⎥
  ⎢0  0  0  1  0  0  0  0  0  0⎥
  ⎢                            ⎥
  ⎢0  0  0  0  1  0  0  0  0  0⎥
  ⎢                            ⎥
  ⎢0  0  0  0  0  0  0  0  0  0⎥
  ⎢                            ⎥
  ⎢0  0  0  0  0  0  1  0  0  0⎥
  ⎢                            ⎥
  ⎢0  0  0  0  0  0  0  1  0  0⎥
  ⎢                            ⎥
  ⎢0  0  0  0  0  0  0  0  0  0⎥
  ⎢                            ⎥
  ⎢0  0  0  0  0  0  0  0  0  1⎥
  ⎢                            ⎥
  ⎣0  0  0  0  0  0  0  0  0  0⎦
 

Similar threads

Back
Top