MHB Find k: 3x^2 + sqrt{2k}x + 6 = 0

  • Thread starter Thread starter mathdad
  • Start date Start date
Click For Summary
To find the value of k for the equation 3x^2 + sqrt{2k}x + 6 = 0 to have exactly one root, the discriminant must equal zero. This leads to the equation 2k - 72 = 0, resulting in k = 36. An alternative method confirms this by analyzing the vertex of the quadratic, showing that it also leads to the same conclusion. Thus, the required value of k is 36. The discussion effectively demonstrates the application of the discriminant in determining the conditions for a single root.
mathdad
Messages
1,280
Reaction score
0
Find the value of k such that the equation has exactly one root.

3x^2 + sqrt{2k}x + 6 = 0

This question involves the discriminant, right?

b^2 - 4ac = 0

(sqrt{2k}^2 - 4(3)(6) = 0

2k - 72 = 0

2k = 72

k = 72/2

k = 36

Correct?
 
Mathematics news on Phys.org
RTCNTC said:
Find the value of k such that the equation has exactly one root.

3x^2 + sqrt{2k}x + 6 = 0

This question involves the discriminant, right?

b^2 - 4ac = 0

(sqrt{2k}^2 - 4(3)(6) = 0

2k - 72 = 0

2k = 72

k = 72/2

k = 36

Correct?

Yes correct.
 
Alternatively,

$$3x^2+\sqrt{2k}x+6=0$$

$$3\left(x^2+\frac{\sqrt{2k}}{3}x\right)+6=0$$

$$3\left(x+\frac{\sqrt{2k}}{6}\right)^2+6-3\left(\frac{\sqrt{2k}}{6}\right)^2=0$$

If the equation has exactly one real root then the vertex "touches" (is tangent to) the $x$-axis, so

$$6-3\left(\frac{\sqrt{2k}}{6}\right)^2=0$$

$$6=3\left(\frac{\sqrt{2k}}{6}\right)^2$$

$$6=3\frac{2k}{36}$$

$$2=\frac{2k}{36}$$

$$72=2k$$

$$k=36$$
 
greg1313 said:
Alternatively,

$$3x^2+\sqrt{2k}x+6=0$$

$$3\left(x^2+\frac{\sqrt{2k}}{3}x\right)+6=0$$

$$3\left(x+\frac{\sqrt{2k}}{6}\right)^2+6-3\left(\frac{\sqrt{2k}}{6}\right)^2=0$$

If the equation has exactly one real root then the vertex "touches" (is tangent to) the $x$-axis, so

$$6-3\left(\frac{\sqrt{2k}}{6}\right)^2=0$$

$$6=3\left(\frac{\sqrt{2k}}{6}\right)^2$$

$$6=3\frac{2k}{36}$$

$$2=\frac{2k}{36}$$

$$72=2k$$

$$k=36$$

Nicely done!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
2K
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K