MHB Find Maximum of $3x-2y$ Given $x^2+4y^2=4$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Maximum
Albert1
Messages
1,221
Reaction score
0
$x,y\in R$ and $x^2+4y^2=4$

please find $max(3x-2y)$
 
Mathematics news on Phys.org
My solution:

We are given the objective function:

$$f(x,y)=3x-2y$$

Subject to the constraint:

$$g(x,y)=x^2+4y^2-4=0$$

Using Lagrange multipliers, we obtain:

$$3=\lambda(2x)$$

$$-2=\lambda(8y)$$

And this implies:

$$x=-6y$$

Substituting into the constraint, we find:

$$y=\pm\frac{1}{\sqrt{10}}\implies x=\mp\frac{6}{\sqrt{10}}$$

We then find:

$$f_{\max}=f\left(\frac{6}{\sqrt{10}},-\frac{1}{\sqrt{10}}\right)=2\sqrt{10}$$
 
Using Cauchy-Schwarz inequality:
$40=(3^2+(-1)^2)\times 4=(3^2+(-1)^2)\times (x^2+(2y)^2)$
$\geq (3x-2y)^2$
$\therefore (3x-2y)\leq \sqrt {40}=2\sqrt {10}$
 
$$3x-2y=m\implies y=\frac{3x-m}{2}$$

$$x^2+4y^2=4\Rightarrow10x^2-6mx+m^2-4=0$$

$$\Delta=160-4m^2$$

If $$m>2\sqrt{10}$$ $$x$$ is not real, hence

$$m=2\sqrt{10}$$
 
greg1313 said:
$$3x-2y=m\implies y=\frac{3x-m}{2}$$

$$x^2+4y^2=4\Rightarrow10x^2-6mx+m^2-4=0$$

$$\Delta=160-4m^2$$

If $$m>2\sqrt{10}$$ $$x$$ is not real, hence

$$m=2\sqrt{10}$$

Very nicely done! (Yes)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
5
Views
2K